Plant and Soil

, Volume 331, Issue 1–2, pp 413–425 | Cite as

Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil

  • Mariangela HungriaEmail author
  • Rubens J. Campo
  • Emanuel M. Souza
  • Fabio O. Pedrosa
Regular Article


Interest in the use of inoculants containing bacteria that promote plant growth is likely to increase in the coming years, due to higher costs of fertilizers, concerns over pollution and emphasis on sustainable agriculture. Although Brazil has a long tradition in research on nitrogen fixation in Azospirillum-grass associations, it has not led to recommendations of strains for use in commercial inoculants. In this study, we report the selection and evaluation of Azospirillum strains for the maize (Zea mays L.) and wheat (Triticum aestivum L.) crops, following protocols established by the Brazilian legislature, i.e. field experiments have to be performed in at least two different localities representing the crop growing regions, and for at least two seasons. In a first set of nine trials performed at Londrina and Ponta Grossa, southern Brazil, nine Azospirillum strains were evaluated after application to seeds as peat-based inoculants. A. brasilense strains Ab-V4, Ab-V5, Ab-V6 and Ab-V7 increased grain yields of maize by 662–823 kg ha−1, or 24–30%, in relation to non-inoculated controls. Two A. lipoferum strains were tested in two of these experiments and promising results were also obtained. With wheat, A. brasilense strains Ab-V1, Ab-V5, Ab-V6 and Ab-V8 were the most effective, increasing yields by 312–423 kg ha−1, or 13–18%. In a second trial set with eight field experiments at Londrina an Ponta Grossa, liquid and peat-based inoculants carrying a combination of A. brasilense strains Ab-V5 and Ab-V6 increased maize and wheat yields by 27% and 31%, respectively. Effects of inoculation were attributed to general increases in uptake of several macro and micronutrients and not specifically to biological nitrogen fixation. All experiments received only a low N-fertilizer starter at sowing (24 kg and 20 kg of N ha−1 for the maize and wheat, respectively) and although yields can be globally considered low, they were compatible with Brazilian mean yields. This study resulted in the identification of the first Azospirillum strains authorized for the production of commercial inoculants in Brazil.


Azospirillum brasilense Azospirillum lipoferum Inoculation Maize Plant growth promoting bacteria Wheat 



The work was partially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil)/MCT, PRONEX. The authors thank Dr. Ricardo S. Araujo for helpful discussions and Dr. Allan R. J. Eaglesham for English review. Author thank to Julio C. Franchini and Fabio. L. Mostasso for technical help in several steps of this study and to José Zucca de Moraes, Rubson N. R. Sibaldelli and Rinaldo B. Conceição for agronomic support. This manuscript was reviewed by the internal editorial committee of the Embrapa Soybean Center, by Dr. Ricardo S. Araujo (Total Biotecnologia, Curitiba, Paraná, Brazil) and by Dr. Fabio B. Reis Junior (Embrapa Cerrados, Planaltina, Federal District, Brazil) prior to submission to Plant and Soil.


  1. Alves BJR, Santos JCF, Urquiaga S, Boddey RM (1994) Métodos de determinação do nitrogênio em solo e em planta. In: Hungria M, Araujo RS (eds) Manual de métodos empregados em estudos de microbiologia agrícola. Embrapa-SPI, Brasília, pp 448–469Google Scholar
  2. Baldani VLD, Döbereiner J (1986) Effect of inoculation of Azospirillum spp. on the nitrogen assimilation of field grown wheat. Plant Soil 95:109–121CrossRefGoogle Scholar
  3. Bashan Y, Holguin G (1997) Azospirillum—plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121CrossRefGoogle Scholar
  4. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relations physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577CrossRefPubMedGoogle Scholar
  5. Bottini R, Fulchieri M, Pearce D, Pharis R (1989) Identification of gibberelins A1, A3, and iso-A3 in cultures of A. lipoferum. Plant Physiol 90:45–47CrossRefPubMedGoogle Scholar
  6. Bouton JH, Albrecht SL, Zuberer DA (1985) Screening and selection of pearl millet for root associated bacterial nitrogen fixation. Field Crops Res 11:131–139CrossRefGoogle Scholar
  7. Burr IW, Foster LA (1972) A test for equality of variances. University of Purdue, West Lafayette 26 pp (Mimeo series, 282)Google Scholar
  8. Caballero-Mellado J, Carcano-Montiel M, Mascarua-Esparza MA (1992) Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243–253Google Scholar
  9. Cassán FD, Garcia de Salamone I (2008) (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, 266 ppGoogle Scholar
  10. Cassán F, Sgroy V, Perrig D, Masciarelli O, Luna V (2008) Producción de fitohormonas por Azospirillum sp Aspectos fisiológicos y tecnológicos de la promoción del crecimiento vegetal. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 59–84Google Scholar
  11. Cochran WG, Cox G (1957) Experimental designs. Wiley, New York 611 ppGoogle Scholar
  12. CONAB (Companhia Nacional de Abastecimento). Série Histórica—Brasil por produtos. Available at <>. Retrieved on the 15th of October, 2009
  13. Correa OS, Romero AM, Soria MA, de Estrada M (2008) Azospirillum brasilense-plant genotype interactions modify tomato response to bacterial diseases, and root and foliar microbial communities. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 85–94Google Scholar
  14. Dardanelli MS, Rodríguez-Navarro DN, Megías-Guijo M, Okon Y (2008) Influencia de la coinoculación Azospirillum-rizobios sobre el crecimiento y la fijación de nitrógeno de leguminosas de interés agronómico. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 141–152Google Scholar
  15. Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286CrossRefGoogle Scholar
  16. Díaz-Zorita M, Fernandez Canigia MV (2008) Análisis de la producción de cereales inoculados con Azospirillum brasilense en la República Argentina. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 153–164Google Scholar
  17. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Austr J Plant Physiol 28:871–879Google Scholar
  18. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  19. Döbereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CT (eds) Proceedings of the international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518–538Google Scholar
  20. Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Science Tech, Springer Verlag, Madison, pp 1–155 (Brock/Springer series in contemporary bioscience)Google Scholar
  21. Döbereiner J, Marriel I, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473CrossRefPubMedGoogle Scholar
  22. Garcia de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  23. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  24. Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66:1527–1531CrossRefPubMedGoogle Scholar
  25. Hadas R, Okon Y (1987) Effect of Azospirillum brasilense inoculation of root morphology and respiration in tomato seedlings. Biol Fertil Soils 5:241–247CrossRefGoogle Scholar
  26. Huergo LF, Monteiro RA, Bonatto AC, Rigo LU, Steffens MBR, Cruz LM, Chubatsu LS, Souza EM, Pedrosa FO (2008) Regulation of nitrogen fixation in Azospirillum brasilense. In: Cassán FD, GarciadeSalamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 17–36Google Scholar
  27. Hungria M, Campo RJ (2007) Inoculantes microbianos: situação no Brasil. In: Izaguirre-Mayoral ML, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: visión técnica, científica y empresarial. Cyted/Biofag, Montevideo, pp 22–31Google Scholar
  28. Kapulnik Y, Okon Y, Henis Y (1987) Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasilense under field conditions. Biol Fertil Soils 4:27–35Google Scholar
  29. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43CrossRefGoogle Scholar
  30. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  31. Pavan MA, Bloch MF, Zempulski HD, Miyazawa M, Zocoler DC (1992) Manual de análise química do solo e controle de qualidade. Instituto Agronômico do Paraná, Londrina 40 pp (Circular 76)Google Scholar
  32. Penot I, Berges N, Guiguene C, Fages J (1992) Characterization of Azospirillum associated with maize (Zea mays L.) in France using biochemical tests and plasmid profiles. Can J Microbiol 38:798–803CrossRefGoogle Scholar
  33. Perrig D, Boiero L, Masciarelli O, Penna C, Cassán F, Luna V (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150CrossRefPubMedGoogle Scholar
  34. Probanza A, Lucas JA, Acero N, Gutiérrez-Mañero FJ (1996) The influence of native bacteria on European alder (Alnus glutinosa [L.] Gaertn.) growth. I. Characterization of growth-promoting and growth-inhibiting bacterial strains. Plant Soil 182:59–66CrossRefGoogle Scholar
  35. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555CrossRefPubMedGoogle Scholar
  36. SAS Institute (2001) Proprietary of software, version 8.2, 6th edn. SAS Institute, CaryGoogle Scholar
  37. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611Google Scholar
  38. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  39. Strzelczyk E, Kamper M, Li C (1994) Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60Google Scholar
  40. Sumner ME (1990) Crop responses to Azospirillum inoculation. Adv Soil Sci 12:54–123Google Scholar
  41. Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980CrossRefPubMedGoogle Scholar
  42. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024PubMedGoogle Scholar
  43. Tukey JW (1949) One degree of freedom for non-additivity. Biometrics 5:232–242CrossRefGoogle Scholar
  44. Wani SP, Chandrapalaih S, Dart PJ (1985) Responses of pearl millet cultivars to inoculation with nitrogen-fixing bacteria. Exp Agric 21:175–182CrossRefGoogle Scholar
  45. Weller DM, Tomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Biotechnology and release of GMOs. VCH Verlagsgesellschaft mbH, Weinheim, pp 1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mariangela Hungria
    • 1
    • 3
    Email author
  • Rubens J. Campo
    • 1
  • Emanuel M. Souza
    • 2
    • 3
  • Fabio O. Pedrosa
    • 2
    • 3
  1. 1.Embrapa SojaLondrinaBrazil
  2. 2.Depto. of Biochemistry and Molecular BiologyUFPRCuritibaBrazil
  3. 3.CNPq Conselho Nacional de Desenvolvimento Científico e TecnológicoBrasíliaBrazil

Personalised recommendations