Advertisement

Plant and Soil

, Volume 330, Issue 1–2, pp 267–280 | Cite as

Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site

  • Clémence M. BesEmail author
  • Michel Mench
  • Maurice Aulen
  • Hélène Gaste
  • Julie Taberly
Regular Article

Abstract

Plant species, spatial variability in plant diversity and vegetation cover were recorded at a French timber treatment site with Cu-contaminated soils (65–2600 mg/kg). Shoot biomass, shoot Cu concentration and accumulation were determined for each plant species found on 168 quadrats with increasing total Cu in soil and soil solution. A total of 91 species occurred on the site including four considered as invasive (Cyperus eragrostis, Phytolacca americana, Senecio inaequidens, and Sporobolus indicus). Species richness, Shannon index, vegetation cover and plant biomass decreased as soil Cu increased. At low soil Cu, members of the Poaceae were most frequent followed by Fabaceae, Rosaceae, and Asteraceae. At high soil Cu, Poaceae were again most frequent. Species known to form Cu-tolerant populations, i.e. Agrostis capillaris, A. stolonifera and Rumex acetosella were present. Shoot Cu concentration and accumulation were higher in plants growing in the most contaminated soils. At 2142 mg Cu/kg soil, shoot Cu accumulation peaked at 6 mg Cu/m² in A. capillaris, and its shoot Cu concentration (364 mg Cu/kg dry weight) exceeded the fodder Cu threshold for domestic livestock. In less Cu-contaminated soils some candidates were identified for sustainable phytoremediation with a potential financial return.

Keywords

Agrostis capillaris Biodiversity Invasibility Phytoremediation Shannon index 

Abbreviations

AD

Abundance/Dominance index

CCA

Copper Chromated Arsenate

DOC

Dissolved Organic Carbon

DOM

Dissolved Organic Matter

DON

Dissolved organic nitrogen

GI

Group I

GII

Group II

GIII

Group III

GIV

Group IV

H

Shannon index

OM

Organic matter

PCA

Principal Component Analysis

Rp

Pearson coefficients of correlation

SR

Species richness

Notes

Acknowledgements

Authors are grateful to ADEME (French Environment and Energy Management Agency ) for funding through the convention n° 05 72 C0018, Department Polluted Sites and Soils, Angers, France, to the Aquitaine Region Council, Bordeaux, France for granting Dr. C. Bes, and to the site owner for allowing access. The authors would also like to thank two anonymous reviewers their helpful and constructive comments.

Supplementary material

11104_2009_198_MOESM1_ESM.pdf (14 kb)
ESM1 (PDF 13 kb)

References

  1. ADEME (1998). La pollution des sols liée aux activités de préservation du bois. ADEME Eds., Angers, FranceGoogle Scholar
  2. Afnor X31-100 (1994a) Qualité des sols, Echantillonnage, Méthode de prélèvement d’échantillons de sol. In: Afnor (ed) Qualité des Sols—Recueil de Normes Françaises. Afnor, Paris, pp 181–191Google Scholar
  3. Afnor X31-103 (1994b) Détermination du pH dans l’eau. Méthode électrométrique. In: Afnor (ed) Qualité des Sols—Recueil de Normes Françaises. Afnor, Paris, pp 339–347Google Scholar
  4. Anand M, Laurence S, Rayfield B (2005) Diversity relationships among taxonomic groups in recovering and restored forests. Conserv Biol 19:955–962CrossRefGoogle Scholar
  5. Bagatto C, Shorthouse JD (1999) Biotic and abiotic characteristics of ecosystems on acid metalliferous mine tailings near Sudbury, Ontario. Can J Bot 77:410–425CrossRefGoogle Scholar
  6. Baize D (1997) Un Point sur Les Teneurs Totales des Eléments Traces Métalliques dans les Sols. INRA Editions, ParisGoogle Scholar
  7. Baize D, Tercé M (2002) Les Éléments Traces Métalliques dans les Sols—Approches Fonctionnelles et Spatiales. INRA Éditions, ParisGoogle Scholar
  8. Baker AJM (1981) Accumulators and excluders—Strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  9. Basanova V, Horak O, Ciamporova M, Nadubinska M, Lichtscheidl I (2006) The vegetation of metalliferous and non-metalliferous grasslands in two mine regions in central Slovakia. Biologia 61:433–439CrossRefGoogle Scholar
  10. Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ phytostabilisation. Environ Pollut 156:1128–1138CrossRefPubMedGoogle Scholar
  11. Bock B (2003) Base de données nomenclaturale de la flore de France, BDNF-V3.02. Tela Botanica, Montpellier. Available via <http://tela-botanica.org/eflore>. Accessed 14 June 2009.
  12. Boon GT, Bouwman LA, Bloem J, Romkens P (1998) Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil. Environ Toxicol Chem 17:1964–1971Google Scholar
  13. Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161CrossRefGoogle Scholar
  14. Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349CrossRefGoogle Scholar
  15. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74CrossRefPubMedGoogle Scholar
  16. Chirenje T, Ma LQ, Clark C, Reeves M (2003) Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles. Environ Pollut 124:407–417CrossRefPubMedGoogle Scholar
  17. Climatik J (2009) Available via <https://intranet.inra.fr/climatik/do/welcome>. Accessed 14 June 2009
  18. Cuypers A (2000) Phytotoxic concentrations of copper and zinc induce antioxidative defence in Phaseolus vulgaris, cv. Limburgse vroege: a comparative study. PhD dissertation, Limburgs Universitair Centrum, Diepenbeek, Belgium.Google Scholar
  19. Dumestre A, Sauve S, McBride M, Baveye P, Berthelin J (1999) Copper speciation and microbial activity in long-term contaminated soils. Arch Environ Con Tox 36:124–131CrossRefGoogle Scholar
  20. Eranen JK, Kozlov MV (2007) Competition and facilitation in industrial barrens: variation in performance of mountain birch seedlings with distance from nurse plants. Chemosphere 67:1088–1095CrossRefPubMedGoogle Scholar
  21. Foster BL, Smith VH, Dickson TL, Hildebrand T (2002) Invasibility and compositional stability in a grassland community: relationships to diversity and extrinsic factors. Oikos 99:300–307CrossRefGoogle Scholar
  22. Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72CrossRefPubMedGoogle Scholar
  23. French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395CrossRefPubMedGoogle Scholar
  24. Fründ HC, Bravin M, Bossung C, Emmerling C, Hinsinger P, Mench M, Tülp H (2007) Is copper stabilizing organic matter in soils? A survey of vineyards and contaminated sites in Germany and France. In: INRA (ed) International symposium on organic matter dynamics in agro-ecosystems. INRA-ESIP, Poitiers, France, pp 458–459Google Scholar
  25. Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile. Chemosphere 41:15–23CrossRefPubMedGoogle Scholar
  26. Ginnochio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepulveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ. Pollut 127:343–352CrossRefGoogle Scholar
  27. Hernandez AJ, Pastor J (2008) Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ Geochem Hlth 30:127–133CrossRefGoogle Scholar
  28. Hill MO, Roy DB, Mountford JO, Bunce RGH (2000) Extending Ellenberg’s indicator values to a new area: an algorithmic approach. J Appl Ecol 37:3–15CrossRefGoogle Scholar
  29. Hutchinson TC, Symington MS (1997) Persistence of metal stress in a forested ecosystem near Sudbury, 66 years after closure of the O’Donnell roast bed. J Geochem Explor 58:323–330CrossRefGoogle Scholar
  30. INRA LAS (2009) Méthodes employées au Laboratoire. Méthodes applicables aux sols. Available at http://www.arras.inra.fr/pages/methode_du_las_sols.htm. Accessed August 10, 2009
  31. Julve P (1998) Baseflor. Index botanique, écologique et chorologique de la flore de France. Available at http://perso.wanadoo.fr/philippe.julve/catminat.htm. Accessed August 2009.
  32. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC, Boca RatonGoogle Scholar
  33. Kim H, Kim DJ, Koo JH, Park JG, Jang YC (2007) Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea. Sci Total Environ 374:273–281CrossRefPubMedGoogle Scholar
  34. Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293CrossRefGoogle Scholar
  35. Koptsik S, Koptsik G, Livantsova S, Eruslankina L, Zhmelkova T, Vologdina Zh (2003) Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity. J Environ Manag 5:441–450Google Scholar
  36. Lepp NW, Hartley J, Toti M, Dickinson NM (1997) Patterns of soil copper contamination and temporal changes in vegetation in the vicinity of a copper rod rolling factory. Environ Pollut 95:363–369CrossRefPubMedGoogle Scholar
  37. Leps J, Hadincova V (1992) How reliable are our vegetation analyses. J Veg Sci 3:119–124CrossRefGoogle Scholar
  38. Malaisse F, Baker A, Ruelle S (1999) Diversity of plant communities and leaf heavy metal content at Luiswishi copper / cobalt mineralization, Upper Katanga, Dem. Rep. Congo. Biotechnol Agron Soc Environ 3:104–114Google Scholar
  39. Mench M, Vangronsveld J, Lepp N, Bleeker P, Ruttens A, Geebelen W (2006) Phytostabilisation of metal—contaminated sites. In: Echevarria G, Morel JL, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, The Netherlands, pp 109–190CrossRefGoogle Scholar
  40. Mench M, Gasté H, Bes C (2008) Phenotypic traits of metallicolous and non-metallicolous Agrostis capillaris exposed to Cu. In: Liskova D, Lux A, Martinka M (eds) COST Action 859, Contaminants and nutrients: availability, accumulation/exclusion and plant-microbia-soil interactions. Bratislava, p 19. Available via http://w3.gre.ac.uk/cost859/WG1/WG1_Smolenice2008_Abstracts.pdf. Accessed 14 June 2009
  41. Mench M, Bes C (2009) Assessment of the ecotoxicity of topsoils from a wood treatment site. Pedosphere 19:143–155CrossRefGoogle Scholar
  42. Remon E, Bouchardon JL, Cornier B, Guy B, Leclerc JC, Faure O (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137:316–323CrossRefPubMedGoogle Scholar
  43. Remon E, Julve P (2009) Flore et végétation de la France : CATMINAT. Available via http://perso.orange.fr/philippe.julve/catminat.htm. Accessed 14 June 2009
  44. Sauvé S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Poll 100:133–149CrossRefGoogle Scholar
  45. Shu WS, Ye ZH, Zhang ZQ, Lan CY, Wong MH (2005) Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restor Ecol 13:49–60CrossRefGoogle Scholar
  46. Siedlecka A, Tukendorf A, Skórzynska-Polit E, Maksymiec W, Wójcik M, Baszynski T, Krupa Z (2001) Angiosperms (Asteracea, Convolvulacea, Fabacea and Poacea; other than Brassicaceae). In: Prasad MNV (ed) Metals in the Environment, Analysis by Biodiversity. New York, pp 171–217.Google Scholar
  47. Simmons JA, Currie WS, Eshleman KN, Kuers K, Monteleone S, Negley TL, Pohlad BR, Thomas CL (2008) Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecol Appl 18:104–118CrossRefPubMedGoogle Scholar
  48. Sørensen T (1948) A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish commons. Biol Skr 5:1–34Google Scholar
  49. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280CrossRefGoogle Scholar
  50. Strandberg B, Axelsen JA, Bruus Pedersen M, Jensen J, Attrill MJ (2006) Effect of a copper gradient on plant community structure. Environ Toxicol Chem 25:743–753CrossRefPubMedGoogle Scholar
  51. Tabacchi E, Planty-Tabacchi AM (2008) Rôle des systèmes linéaires (corridors routiers et fluviaux) dans l’invasion des espèces végétales introduites. Available via http://www.ecologie.gouv.fr/Role-des-systemes-lineaires.html. Accessed 14 June 2009
  52. Teng Y, Luo YM, Huang CY, Long J, Li ZG, Christie P (2008) Tolerance of grasses to heavy metal and microbial functional diversity in soils contaminated with copper mine tailings. Pedosphere 18:363–370CrossRefGoogle Scholar
  53. Vidic T, Jogan N, Drobne D, Vihlar B (2006) Natural revegetation in the vicinity of the former lead smelter in Zerjav, Slovenia. Environ Sci Technol 40:4119–4125CrossRefPubMedGoogle Scholar
  54. Wang YB, Liu DY, Zhang L, Li Y, Chu L (2004) Patterns of vegetation succession in the process of ecological restoration on the deserted land of Shizishan copper tailings in Tongling city. Acta Bot Sin 46:780–787Google Scholar
  55. Whiteley GM, Williams S (1993) Effects of treatment of metalliferous mine spoil with lignite derived humic substances on the growth-responses of metal tolerant and non—metal tolerant cultivars of Agrostis capillaris L. Soil Technol 6:163–171CrossRefGoogle Scholar
  56. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780CrossRefPubMedGoogle Scholar
  57. Yazici I, Tuerkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57CrossRefGoogle Scholar
  58. Yruela I (2005) Copper in plants. Braz J Phys 17:145–156Google Scholar
  59. Zobel M, Pilt I, Moora M, Pärtel M, Liira J (1999) Small-scale dynamics of plant communities in an experimentally polluted and fungicide-treated subarctic birch-pine forest. Acta Oecol 20:29–37CrossRefGoogle Scholar
  60. Zvereva EL, Kozlov MV (2004) Facilitative effects of top-canopy plants on four dwarf shrub species in habitats severely disturbed by pollution. J Ecol 92:288–296CrossRefGoogle Scholar
  61. Zvereva EL, Toivonen E, Koslov MV (2008) Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Global Ecol Biogeogr 17:305–319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Clémence M. Bes
    • 1
    Email author
  • Michel Mench
    • 1
  • Maurice Aulen
    • 1
  • Hélène Gaste
    • 1
  • Julie Taberly
    • 1
  1. 1.UMR BIOGECO INRA 1202, Ecology of CommunitiesUniversity of Bordeaux 1TalenceFrance

Personalised recommendations