Skip to main content
Log in

Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Whether grazing response of species abundance can be predicted by plant functional trait remains a challenge untested in a specific ecosystem. We measured species abundance and relevant functional traits for 30 common component species in a moderately grazed and a control community over 3 years (2005, 2006 and 2007) in a Kobresia capillifolia dominated alpine meadow on the Tibetan Plateau. Our objective was to examine species response to grazing and to test the relationship between the response of species abundance and functional traits in grazed and control habitats. Our results showed: i) in terms of species relative abundance and saturated height (the maximum height of an adult individual), most component species significantly decrease in response to moderate grazing and the effect differed among species and between functional groups. ii) The response of species abundance was significantly negatively correlated with saturated height, but not correlated with specific leaf area or seed size. We concluded that the response direction of species abundance to grazing can be predicted by functional traits, whereas it is a weak predictor of the extent of grazing response in species abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson MT, Frank DA (2003) Defoliation effects on reproductive biomass: importance of scale and timing. J Range Manage 56:501–516

    Article  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments: linking physiological, population, and community ecology. Cambridge University Press, Australia

    Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defense. Bioscience 37:58–67

    Article  Google Scholar 

  • Bullock J, Franklin J, Stevenson M, Silvertown J, Coulson S, Gregory S, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38:253–267. doi:10.1046/j.1365-2664.2001.00599

    Article  Google Scholar 

  • Cheplick GP (1989) Nutrient availability, dimorphic seed production, and reproductive allocation in the annual grass Amphicarpum purshii. Can J Bot 67:2514–2521. doi:10.1139/b89-321

    Google Scholar 

  • Cingolani AM, Posse G, Collantes MB (2005) Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J Appl Ecol 42:50–59. doi:10.1111/j.1365-2664.2004.00978.x

    Article  Google Scholar 

  • Cornelissen JHC, Lavoral S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:0067-1924/03/040335

    Article  Google Scholar 

  • Crawley MJ (1997) Life history and environment. In: Crawley MJ (ed) Plant ecology (2nd ed). Blackwell scientific publications, pp 73–132

  • De Bello F, Leps JAN, Sebastia M-T (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42:824–833. doi:10.1111/j.1365-2664.2005.01079.x

    Article  Google Scholar 

  • Devineau JL, Fournier A (2005) To what extent can simple plant biological traits account for the response of the herbaceous layer to environmental changes in fallow-savanna vegetation (West Burkina Faso, West Africa)? Flora 200:361–375. doi:10.1016/j.flora.2005.01.005

    Google Scholar 

  • Diaz S, Noy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38:497–508. doi:10.1046/j.1365-2664.2001.00635

    Article  Google Scholar 

  • Diaz S, Lavorel S, McIntyer S, Falczuk V, Milchunas D, Casanoves F, Clark H, Skarpe C, Rush G, Sternberg M, Noy-Meir I, Landsberg J, Zhang J, Clark H, Campbell BD (2007) Plant trait responses to grazing-a global synthesis. Global Change Biol 13:313–341. doi:10.1111/j.1365-2486.2006.01288

    Article  Google Scholar 

  • Edwards GR, Crawley MJ (1999) Effects of disturbance and rabbit grazing on seedling recruitment of six mesic grassland species. Seed Sci Res 9:145–156. doi:10.1017/S0960258599000161

    Google Scholar 

  • Falster D, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343. doi:10.1016/S0169-5347(03)00061-2

    Article  Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press Inc., New York

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. John Wiley & Sons, Ltd., Chichester, New York, Brisbane, Toronto

  • Kahmen S, Poschlod P, Schreiber KF (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biological Conservation 104:PII S0006-3207(01)00197-5

  • Klimesova J, Latzel V, de Bello F, van Groenendael JM (2008) Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80:245–253

    Google Scholar 

  • Kühner A, Kleyer M (2008) A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. J Veg Sci 19:681–692. doi:10.3170/2008-8-18436

    Article  Google Scholar 

  • Li WH, Zhou XM (1998) Ecosystem of Qinghai-Tibetan Plateau and mode of optimization utilization. Guang Dong Science and Technology Press, Guang Dong

    Google Scholar 

  • Louault F, Pillar VD, Aufrere J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160. doi:10.1658/1100-9233(2005)016[0151:PTAFTI] 2.0.CO;2

    Article  Google Scholar 

  • Luo YJ, Qin GL, Du GZ (2006) Importance of assemblage-level thinning: a field experiment in an alpine meadow on the Tibet plateau. J Veg Sci 17:417–424. doi:10.1658/1100-9233(2004) 015[0789:CEATNM]2.0.CO;2

    Article  Google Scholar 

  • McGill B, Enquist B, Westoby M, Weiher E (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–184. doi:10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • McIntyre S, Lavorel S (2001) Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J Ecol 89:209–226. doi:10.1046/j.1365-2745.2001.00535.x

    Article  Google Scholar 

  • McNaughton SJ (1985) Ecology of a grazing ecosystem: the serengeti. Ecol Monogr 55:259–294. doi:10.2307/1942578

    Article  Google Scholar 

  • Meers TL, Bell TL, Enright NJ, Kasel S (2008) Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J Veg Sci 19:515–524. doi:10.3170/2008-8-18401

    Article  Google Scholar 

  • Milchunas DG, Sala OE, Lauenroth WK (1988) A generalized model of the effects of grazing by large herbivores on grassland community structure. Am Nat. 132:97–106. doi:003-0147/88/3201-0006$02.00

    Article  Google Scholar 

  • Moog D, Kahmen S, Poschlod P (2005) Application of CSR-and LHS-strategies for the distinction of differently managed grasslands. Basic Appl Ecol 6:133–143. doi:10.1016/j.baae.2005.01.005

    Article  Google Scholar 

  • Niu KC, Luo YJ, Choler P, Du GZ (2008) The role of biomass allocation strategy on diversity loss due to fertilization. Basic Appl Ecol 9:485–493. doi:10.1016/j.baae.2007.06.015

    Article  Google Scholar 

  • Niu KC, Choler P, Zhao BB, Du GZ (2009) The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands. Funct Ecol 23:274–283. doi:10.1111/j.1365-2435.2008.01502

    Article  Google Scholar 

  • Pakeman RJ (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J Ecol 92:893–905. doi:10.1111/j.0022-0477.2004.00928

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Shipley B (1995) Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Funct Ecol 312–319

  • Stearns SC (1992) The evolution of life histories. Oxford University, Oxford

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Van Der Wal R, Egas M, Van Der Veen A, Bakker J (2000) Effects of resource competition and herbivory on plant performance along a natural productivity gradient. J Ecol 88:317–330. doi:10.1046/j.1365-2745.2000.00450.x

    Article  Google Scholar 

  • Vesk PA, Westoby M (2001) Predicting plant species’ responses to grazing. J Appl Ecol 38:897–909

    Article  Google Scholar 

  • Vesk PA, Leishman MR, Westoby M (2004) Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J Appl Ecol 41:22–31. doi:10.1111/j.1365-2664.2004.00857.x

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268. doi:10.1016/j.tree.2006.02.004

    Article  PubMed  Google Scholar 

  • Westoby M, Eldridge D, Freudenberger D (1999) The LHS strategy scheme in relation to grazing and fire. Proceedings of the International Rangeland Congress, Townsville, Australia 2:893–896

  • Westoby MF, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies. some leading dimensions of variation between species. Annu Rev Ecol Evol S 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Wilson P, Thompson K, Hodgson J (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162. doi:10.1046/j.1469-8137.1999.00427

    Article  Google Scholar 

  • Zhao BB, Niu KC, Du GZ (2009) The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community on the Qinghai-Tibetan Plateau (In Chinese with English abstract). Acta Ecologica Sinica 29:1596–1606

    Google Scholar 

Download references

Acknowledgements

We are grateful to Ken Moloney and Jinsheng He for assistance in editing of the manuscript, and to Francesco de Bello and Philippe Choler for their valuable discussions. We thank Bayaerta, Peng Jia, Xianhui Zhou and the staffs at The Research Station of Alpine Meadow and Wetland Ecosystem of Lanzhou University for providing invaluable field assistance. The study was supported by the National Natural Science Foundation of China (Grant 40930533 to G. Du). K. Niu was partially supported by the Ministry of Science and Technology of China (Project 2007BAC06B01 to J. He).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kechang Niu or Shiting Zhang.

Additional information

Responsible Editor: Tibor Kalapos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, K., Zhang, S., Zhao, B. et al. Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow. Plant Soil 330, 215–223 (2010). https://doi.org/10.1007/s11104-009-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0194-8

Keywords

Navigation