Plant and Soil

, Volume 328, Issue 1–2, pp 95–108 | Cite as

Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas

  • Lixin Wang
  • Paolo D’Odorico
  • Lydia Ries O’Halloran
  • Kelly Caylor
  • Stephen Macko
Regular Article


Savannas cover about 20% of the Earth’s land area and 50% of Africa. As an indispensable component of savanna, grasses play an important role in these ecosystems. A better understanding of grass productivity and its controlling factors in savanna ecosystems could therefore be a key to understand the functioning of savannas and predict savanna responses to future climatic changes. In this study, a stable isotope fertilization experiment was conducted to determine how factors limiting grass production in savannas differ across regional climate gradients. The study was conducted on the geomorphically homogenous Kalahari Transect (KT), which offers an ideal setting to study nutrient and vegetation dynamics independently of confounding soil effects. The results show that the grasses assimilated the added fertilizer at all the sites but they did not respond to nitrogen fertilization for both dry and wet years, and at both dry and wet ends of the Transect. Although prior studies have proposed a switch between water and nitrogen limitations between arid and mesic savannas, our results suggest that nitrogen availability may not limit grass productivity across the whole KT. Thus, although the traditional classifications as nutrient poor (broad-leaf) and nutrient rich (fine-leaf) savanna ecosystems may still be useful, it does not necessarily imply the existence of nitrogen limitation in the nutrient poor area; in fact, it is more likely that the herbaceous species found in the more humid sites (nutrient poor sites) are already adapted to lower nitrogen availability.


Arid Botswana Fertilization Kalahari Transect 15Savanna Semi-arid Stable isotopes Tracer Water Zambia 


  1. Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Glob Chang Biol 10:359–373CrossRefGoogle Scholar
  2. Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031CrossRefGoogle Scholar
  3. Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  4. Chapin FS, Vitousek PM, Cleve KV (1986) The nature of nutrient limitation in plant communities. Am Nat 12:48–58Google Scholar
  5. Cilliers J, Van der Merwe H, Vermaak L, Jaarsma J, Oosthuysen D (1995) Effects of veld fertilization on herbage chemical composition and beef cattle production. Anim Sci 61:519–526Google Scholar
  6. Czarnomski N, Moore G, Pypker T, Licata J, Bond B (2005) Precision and accuracy of three alternative instruments for measuring soil water content in two forest soils of the Pacific Northwest. Can J For Res 35:1867–1876CrossRefGoogle Scholar
  7. D’Odorico P, Laio F, Porporato A, Rodriguez-Iturbe I (2003) Hydrologic control on soil carbon and nitrogen cycles, II a case study. Adv Water Resour 26:59–70CrossRefGoogle Scholar
  8. D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res 112:G04010. doi:04010.01029/02006JG000379 CrossRefGoogle Scholar
  9. Epstein HE, Pareuelo JM, Pińeiro G, Burke IC, Lauenroth WK (2006) Interactions of water and nitrogen on primary productivity across spatial and temporal scales in grasslands and shrubland ecosystems. In: D'Odorico P, Porporato A (eds) Dryland ecohydrology. Springer, DordrechtGoogle Scholar
  10. Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400. doi:310.1111/j.1365-2699.2005.01448.x CrossRefGoogle Scholar
  11. Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293Google Scholar
  12. Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K, Hong Y, Stocker E, Wolff D (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8:38–55CrossRefGoogle Scholar
  13. Koch GW, Scholes RJ, Steffen WL, Vitousek PM, Walker BH (1995) The IGBP terrestrial transects: Science plan, Report No. 36. International Geosphere-Biosphere Programme, Stockholm, p 61Google Scholar
  14. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450CrossRefGoogle Scholar
  15. Li J, Okin GS, Alvarez LJ, Epstein HE (2009) Sediment deposition and soil nutrient heterogeneity in two desert grassland ecosystems, southern New Mexico. Plant Soil 319:67–84. doi:10.1007/s11104-11008-19850-11107 CrossRefGoogle Scholar
  16. Ludwig F, de Kroon H, Prins HHT, Berendse F (2001) Effects of nutrients and shade on tree-grass interactions in an east African savanna. J VEG SCI 12:579–588CrossRefGoogle Scholar
  17. Midgley GF, Aranibar JN, Mantlana KB, Macko SA (2004) Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna. Glob Chang Biol 10:309–317CrossRefGoogle Scholar
  18. Moleele NM, Mainah J (2003) Resource use conflicts: the future of the Kalahari ecosystem. Journal of Arid Environments 54:405–423CrossRefGoogle Scholar
  19. Murphy DV, Recous S, Stockdale EA, Fillery IRP, Jensen LS, Hatch DJ, Goulding KWT (2003) Gross nitrogen fluxes in soil: theory, measurement and application of 15N pool dilution techniques. Adv Agron 79:69–118CrossRefGoogle Scholar
  20. Okin GS, Mladenov N, Wang L, Cassel D, Caylor KK, Ringrose S, Macko SA (2008) Spatial patterns of soil nutrients in two southern African savannas. J Geophys Res 113:G02011. doi:02010.01029/02007JG000584 CrossRefGoogle Scholar
  21. Ries L (2007) Nutrient and light limitations on vegetation dynamics in the savannas of southern Africa. University of Virginia, Charlottesville, p 81Google Scholar
  22. Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited–insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490CrossRefGoogle Scholar
  23. Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Roux XL, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849CrossRefPubMedGoogle Scholar
  24. Sarmiento G (1984) The ecology of Neotropical savannas. Harvard University Press, CambridgeGoogle Scholar
  25. Scanlon TM, Albertson JD (2003) Inferred controls on tree/grass composition in a savanna ecosystem: combining 16-Year NDVI data with a dynamic soil moisture model. Water Resour Res 39:1224. doi:1210.1029/2002WR001881 CrossRefGoogle Scholar
  26. Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–212CrossRefPubMedGoogle Scholar
  27. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544CrossRefGoogle Scholar
  28. Scholes RJ, Walker BH (1993) An African savanna. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Scholes RJ, Dowty PR, Caylor K, Parsons DAB, Frost PGH, Shugart HH (2002) Trends in savanna structure and composition along an aridity gradient in the Kalahari. J VEG SCI 13:419–428CrossRefGoogle Scholar
  30. Shugart HH, Macko SA, Lesolle P, Szuba TA, Mukelabai MM, Dowty P, Swap RJ (2004) The SAFARI 2000-Kalahari transect wet season campaign of year 2000. Glob Chang Biol 10:273–280CrossRefGoogle Scholar
  31. Snyman HA (2002) Short-term responce of rangeland botanical composition and productivity to fertilization (N and P) in a semi-arid climate of South Africa. J Arid Environ 50:167–183CrossRefGoogle Scholar
  32. Swemmer AM, Knapp AK, Snyman HA (2007) Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J Ecol 95:780–788. doi:710.1111/j.1365-2745.2007.01237.x CrossRefGoogle Scholar
  33. Thomas AD, Hoon SR, Linton PE (2008) Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl Soil Ecol 39:254–263CrossRefGoogle Scholar
  34. Toit JTD, Rogers KH, Biggs HC (2003) The Kruger experiment-ecology and management of savanna heterogeneity. Island, Washington, p 519Google Scholar
  35. Veenendaal EM, Kolle O, Lloyd J (2004) Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa. Glob Chang Biol 10:318–328CrossRefGoogle Scholar
  36. Walker BH, Ludwig D, Holling CS, Peterman RN (1981) Stability of semi-arid savanna grazing systems. J Ecol 69:473–498CrossRefGoogle Scholar
  37. Wang L, D’Odorico P, Ringrose S, Coetzee S, Macko S (2007a) Biogeochemistry of Kalahari sands. J Arid Environ 71:259–279. doi:210.1016/j.jaridenv.2007.1003.1016 CrossRefGoogle Scholar
  38. Wang L, Okin GS, Wang J, Epstein H, Macko SA (2007b) Predicting leaf and canopy 15N compositions from reflectance spectra. Geophys Res Lett 34:L02401. doi:02410.01029/02006GL028506 CrossRefGoogle Scholar
  39. Wang L, Okin GS, Caylor KK, Macko SA (2009a) Spatial heterogeneity and sources of soil carbon in southern African savannas. Geoderma 149:402–408. doi:410.1016/j.geoderma.2008.1012.1014 CrossRefGoogle Scholar
  40. Wang L, D'Odorico P, Ries L, Macko S (2009b) Patterns and implications of plant-soil δ13C and δ15N values in African savanna ecosystems. Quaternary Research. doi: 10.1016/j.yqres.2008.1011.1004
  41. Williams CA, Hanan NP, Neff JC, Scholes RJ, Berry JA, Denning AS, Baker DF (2007) Africa and the global carbon cycle. Carbon Balance Manag 2:3. doi:10.1186/1750-0680-1182-1183 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lixin Wang
    • 1
    • 2
  • Paolo D’Odorico
    • 1
  • Lydia Ries O’Halloran
    • 3
  • Kelly Caylor
    • 2
  • Stephen Macko
    • 1
    • 4
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Department of ZoologyOregon State UniversityCorvallisUSA
  4. 4.Program in Geobiology and Low Temperature GeochemistryU. S. National Science FoundationArlingtonUSA

Personalised recommendations