Skip to main content
Log in

Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The main aim of this study was to compare the suitability of three single chemical extractants [EDTA, CaCl2 and the low-molecular-weight organic acids solution (LMWOAs)] to estimate Cu, Zn and Ni uptake by barley (Hordeum vulgare) from rhizosphere soils, following a single application of a metal salts-spiked sewage sludge. Thirty-six contrasting soils from different parts of Spain were amended with the same dose (15.71 g dry weight kg-1) of polluted sewage sludge and sown with barley seeds under greenhouse conditions. Eight weeks after sowing, the plants were harvested and Cu, Zn and Ni were analysed in the roots. Heavy metal uptake was then compared with the theoretically available heavy metals in the rhizosphere soils, assessed by the three single chemical extractants. These three extractants alone failed to predict heavy metal uptake, and soil properties were needed to obtain accurate predictions. Thus, none of the methods tested in this study can be used as a universal soil extraction for estimating Cu, Zn and Ni uptake by barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biochemistry, bioavailability, and risk of metals, 2nd edn. Springer, New York

    Google Scholar 

  • Alloway BJ, Jackson AP, Morgan H (1990) The accumulation of cadmium by vegetables grown on soils polluted from a variety of sources. Sci Total Environ 91:223–236

    Article  CAS  PubMed  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace elements chemistry in residual-treated soil: key concepts and heavy metal bioavailability. J Environ Qual 34:49–63

    CAS  PubMed  Google Scholar 

  • Bernal MP, Sánchez-Monedero MA, Paredes C, Roig A (1998) Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric Ecosyst Environ 69:175–189

    Article  CAS  Google Scholar 

  • Borggaard OK (1976) The use of EDTA in soil analysis. Acta Agric Scand 26:144–150

    Article  CAS  Google Scholar 

  • Borrador del Plan Nacional Integrado de Residuos 2008–2015 (2008) Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid

  • Bremmer JM, Mulvaney CS (1982) Nitrogen total. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. ASA, Madison, pp 595–624

    Google Scholar 

  • Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123:229–238

    Article  CAS  PubMed  Google Scholar 

  • Cieslinski G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117

    Article  CAS  Google Scholar 

  • Coppola S, Dumontet S, Pontonio M, Basile G, Marino P (1988) Effect of cadmium-bearing sewage sludge on crop plants and microorganisms in two different soils. Agric Ecosyst Environ 20:181–194

    Article  CAS  Google Scholar 

  • Davis R, Carlton-Smith CH (1981) The preparation of sewage sludges of controlled metal content for experimental purposes. Environ Pollut 2:167–177

    Article  CAS  Google Scholar 

  • Dolgen D, Alpaslan MN, Delen N (2007) Agricultural recycling of treatment-plant sludge: A case study for a vegetable-processing factory. J Environ Manage 84:274–281

    Article  CAS  PubMed  Google Scholar 

  • EEC (1986) European Community Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture

  • EEC (1991) European Community Council Directive 91/271/EEC of 21 March 1991 concerning urban wastewater treatment

  • Eriksson JE (1989) The influence of pH, soil type and time on adsorption and uptake by plants of Cd added to soils. Water Air Soil Pollut 48:317–335

    Article  CAS  Google Scholar 

  • Evans LJ, Spiers GA, Zhao G (1995) Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils. Int J Environ Anal Chem 59:291–302

    Article  CAS  Google Scholar 

  • Fang J, Wen B, Shan XQ, Lin JM, Owens G (2007) Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils. Environ Pollut 150:209–217

    Article  CAS  PubMed  Google Scholar 

  • Feng MH, Shan XQ, Zhang Z, Wen B (2005a) Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 59:939–949

    Article  CAS  PubMed  Google Scholar 

  • Feng MH, Shan XQ, Zhang SZ, Wen B (2005b) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137:231–240

    Article  CAS  PubMed  Google Scholar 

  • Forster JC (1995) Soil physical analysis. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, San Diego, CA, pp 106–111

    Google Scholar 

  • Fox TR, Comerford NB (1990) Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Sci Soc Am J 54:1139–1144

    CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis 1: physical and mineralogical methods, 2nd edn. American Society of Agronomy, Madison, Wisconsin, pp 383–411

    Google Scholar 

  • Gupta SK, Aten C (1993) Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Intern J Environ Anal Chem 51:25–46

    Article  CAS  Google Scholar 

  • Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31:1561–1569

    Article  CAS  PubMed  Google Scholar 

  • Hamon RE, Holm PE, Lorenz SE, McGrath SP, Christensen TH (1999) Metal uptake by plants from sludge-amended soils: caution is required in the plateau interpretation. Plant Soil 216:53–64

    Article  CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nut 38:93–100

    CAS  Google Scholar 

  • Hooda PS, Alloway BJ (1994) The plant availability and DTPA extractability of trace metals in sludge-amended soils. Sci Total Environ 149:39–51

    Article  CAS  Google Scholar 

  • Hooda PS, McNulty D, Alloway BJ, Aitken MN (1997) Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. J Sci Food Agr 73:446–454

    Article  CAS  Google Scholar 

  • Hulseman J (1996) An inventory of marine carbonate materials. J Sediment Petrol. ASCE 36:622–625

    Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of heavy metals-an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kandpal G, Ram B, Srivastava PC, Singh SK (2004) Effect of metal spiking on different chemical pools and chemically extractable fraction of heavy metals in sewage sludge. J Hazard Mater 106:133–137

    Article  CAS  PubMed  Google Scholar 

  • Lake DL, Kirk PWW, Lester JN (1984) Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: areview. J Environ Qual 13:175–183

    CAS  Google Scholar 

  • Lebourg A, Sterckeman T, Ciesielski H, Proix N (1996) Intérêt de différents réactifs d’extraction chimique pour l’évaluation de la biodisponibilité des métaux en traces du sol. Agronomie 16:201–215

    Article  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Lombi E, Zhao F, Zhang G, Sun B, Fitz W, Zhang H, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut 118:435–443

    Article  CAS  PubMed  Google Scholar 

  • Mamais D, Kouzeli-Katsiri A, Christoulas DG, Andreadakis AD, Aftias E (2000) Evaluation of agricultural utilization of the sludge produced at Psyttalia wastewater treatment plant. Water Sci Technol 42:21–28

    CAS  Google Scholar 

  • McBride MB (2003) Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks? Adv Environ Res 8:5–19

    Article  CAS  Google Scholar 

  • McLaughlin MJ (2002) Bioavailability of metales to terrestrial plants. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partioning for bioavailability to invertebrates, microbes, and plants. SETAC Press, Penascola, FL, pp 39–68

    Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000a) A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38:1037–1086

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000b) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31:1661–1700

    Article  CAS  Google Scholar 

  • Meers E, Samson R, Tack FMG, Ruttens A, Vangronsveld J, Verloo MG (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation in Phaseolus vulgaris. Environ Exp Bot 60:385–396

    Article  CAS  Google Scholar 

  • Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130

    Article  CAS  PubMed  Google Scholar 

  • Miner GS, Gutierrez R, King LD (1997) Soil factors affecting plant concentrations of cadmium, copper, and zinc on sludge-amended soils. J Environ Qual 26:989–994

    CAS  Google Scholar 

  • Moral R, Navarro-Pedreño J, Gómez I, Mataix J (1996) Quantitative analysis of organic residues: effects of samples preparation in the determination of metal. Comm Soil Sci Plant Anal 27:753–761

    Article  CAS  Google Scholar 

  • Naidu R, Harter RD (1998) Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci Soc Am J 62:644–650

    CAS  Google Scholar 

  • Nelson DV, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of soil analysis 2: chemical and biological methods. American Society of Agronomy and Soil Science of America, Madison, Wisconsin, pp 539–579

    Google Scholar 

  • Nolan AL, Zhang H, McLaughlin MJ (2005) Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J Environ Qual 34:496–507

    CAS  PubMed  Google Scholar 

  • Novozamsky I, Lexmond THM, Houba VJG (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int J Environ Anal Chem 51:47–58

    Article  CAS  Google Scholar 

  • Parker DR, Chaney RL, Norvell WA (1995) Chemical equilibrium models: Applications to plant nutrition research. In: Loeppert RH, Schwab AP, Goldberg S (eds) Chemical equilibrium and reaction models. Special publication 42. Soil Science Society of America, Madison, Wisconsin, pp 163–200

    Google Scholar 

  • Pascual I, Antolín MC, García C, Polo A, Sánchez-Díaz M (2004) Plant availability of heavy metals in a soil amended with a high dose of sewage sludge under drought conditions. Biol Fertil Soils 40:291–299

    Article  CAS  Google Scholar 

  • Percival HJ, Speir TW, Parshotam A (1999) Soil solution chemistry of contrasting soils amended with heavy metals. Aust J Soil Res 37:993–1004

    Article  CAS  Google Scholar 

  • Pierzynski GM (1998) Past, present, and future approaches for testing metals for environmental concerns and regulatory approaches. Commun Soil Sci Plant Anal 29:1523–1536

    Article  CAS  Google Scholar 

  • Rauret G, Lopez JF, Sahuquillo A, Rubio R, Davison C, Ure A, Quevauviller PH (1999) Improvement of BCR three step sequential extraction prodcedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  CAS  PubMed  Google Scholar 

  • Sauve S, Dumestre A, McBride M, Hendershot W (1998) Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ Toxicol Chem 17:1481–1489

    Article  CAS  Google Scholar 

  • Schnitzer M, Skinner SIM (1966) Organo-metallic interactions in soils. Soil Sci 102:361–366

    Article  CAS  Google Scholar 

  • Shan XQ, Wang ZW, Wang WS, Zhang S, Wen B (2003) Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants. Anal Bioanal Chem 375:400–407

    CAS  PubMed  Google Scholar 

  • Sloan JJ, Dowdy RH, Dolan MS, Linden DR (1997) Long-term effects of biosolids application on heavy metal bioavailability in agricultural soils. J Environ Qual 26:966–974

    Article  CAS  Google Scholar 

  • Sparks DL (1995) Environmental Soil Chemistry. Academic, San Diego

    Google Scholar 

  • Speir TW, Kettles HA, Percival HJ, Parshotam A (1999) Is soil acidification the cause of biochemical response when soils are amended with heavy metal salts? Soil Biol Biochem 31:1953–1961

    Article  CAS  Google Scholar 

  • Speir TW, Van Schaik AP, Percival HJ, Close ME, Pang L (2003) Heavy metals in soil, plants and groundwater following high-rate sewage sludge application to land. Water Air Soil Pollut 150:319–358

    Article  CAS  Google Scholar 

  • Speir TW, Van Schaik AP, Hunter LC, Ryburn JL, Percival HJ (2007) Attempts to derive EC50 values for heavy metals from land applied Cu-, Ni-, and Zn-spiked sewage sludge. Soil Biol Biochem 39:539–549

    Article  CAS  Google Scholar 

  • Street JJ, Lindsay WL, Sabey BR (1977) Solubility and plant uptake of cadmium in soils amended with cadmium and sewage sludge. J Environ Qual 6:72–77

    Article  CAS  Google Scholar 

  • Tack FMG, Verloo MG (1995) Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. Int J Environ Anal Chem 59:225–238

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate heavy metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Tyler G (1978) Leaching rates of heavy metal ions in forest soil. Water Air Soil Pollut 9:137–148

    Article  CAS  Google Scholar 

  • Ure AM (1995) Methods of analysis for heavy metals in soils. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie, Glasgow, pp 58–102

    Google Scholar 

  • Vázquez S, Moreno E, Carpena RO (2008) Bioavailability of metals and As from acidified multicontaminated soils: Use of white lupin to validate several extraction methods. Environ Geochem Health 30:193–198

    Article  PubMed  CAS  Google Scholar 

  • Wang WS, Shan WQ, Wen B, Zhang SZ (2003) Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53:523–530

    Article  CAS  PubMed  Google Scholar 

  • Wang WS, Shan WQ, Wen B, Zhang SZ (2004) A method for predicting bioavailability of rare earth elements in soils to maize. Environ Tox Chem 23:767–773

    Article  CAS  Google Scholar 

  • Wear JI, Evans CE (1968) Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants. Soil Sci Soc Am Proc 32:543–546

    Article  CAS  Google Scholar 

  • Zhang H, Zhao FJ, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Environment (Number of expedient: 021/2006/2-4.2). Jose M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Martín Soriano-Disla.

Additional information

Responsible Editor: Fangjie J. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano-Disla, J.M., Gómez, I., Navarro-Pedreño, J. et al. Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant Soil 327, 303–314 (2010). https://doi.org/10.1007/s11104-009-0055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0055-5

Keywords

Navigation