Plant and Soil

, Volume 327, Issue 1–2, pp 35–47 | Cite as

Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply

  • Audrey Niboyet
  • Laure Barthes
  • Bruce A. Hungate
  • Xavier Le Roux
  • Juliette M. G. Bloor
  • Annick Ambroise
  • Sandrine Fontaine
  • Peter M. Price
  • Paul W. Leadley
Regular Article

Abstract

Despite increasing interest in the effects of climate change on soil processes, the response of nitrification to elevated CO2 remains unclear. Responses may depend on soil nitrogen (N) status, and inferences may vary depending on the methodological approach used. We investigated the interactive effects of elevated CO2 and inorganic N supply on gross nitrification (using 15N pool dilution) and potential nitrification (using nitrifying enzyme activity assays) in Dactylis glomerata mesocosms. We measured the responses of putative drivers of nitrification (NH4+ production, NH4+ consumption, and soil environmental conditions) and of potential denitrification, a process functionally linked to nitrification. Gross nitrification was insensitive to all treatments, whereas potential nitrification was higher in the high N treatment and was further stimulated by elevated CO2 in the high N treatment. Gross mineralization and NH4+ consumption rates were also significantly increased in response to elevated CO2 in the high N treatment, while potential denitrification showed a significant increase in response to N addition. The discrepancy between the responses of gross and potential nitrification to elevated CO2 and inorganic N supply suggest that these measurements provide different information, and should be used as complementary approaches to understand nitrification response to global change.

Keywords

CO2 and N interactions Gross mineralization Gross nitrification Potential nitrification Potential denitrification 

References

  1. Arnone JA, Bohlen PJ (1998) Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia 116:331–335. doi:10.1007/s004420050594 CrossRefGoogle Scholar
  2. Barnard R, Barthes L, Le Roux X, Leadley PW (2004) Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2. New Phytol 162:365–376. doi:10.1111/j.1469-8137.2004.01038.x CrossRefGoogle Scholar
  3. Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Glob Biogeochem Cycles 19:1–13. doi:10.1029/2004GB002282 CrossRefGoogle Scholar
  4. Barnard R, Barthes L, Leadley PW (2006a) Short-term uptake of 15N by a grass and soil micro-organisms after long term exposure to elevated CO2. Plant Soil 280:91–99. doi:10.1007/s11104-005-2553-4 CrossRefGoogle Scholar
  5. Barnard R, Le Roux X, Hungate BA, Cleland EE, Blankinship JC, Barthes L, Leadley PW (2006b) Several components of global change alter nitrifying and denitrifying activities in an annual grassland. Funct Ecol 20:557–564. doi:10.1111/j.1365-2435.2006.01146.x CrossRefGoogle Scholar
  6. Barraclough D (1995) 15N isotope dilution techniques to study soil nitrogen transformations and plant uptake. Fert Res 42:185–192. doi:10.1007/BF00750513 CrossRefGoogle Scholar
  7. Bloor JMG, Barthes L, Leadley PW (2008) Effects of elevated CO2 and N on tree-grass interactions: an experimental test using Fraxinus excelsior and Dactylis glomerata. Funct Ecol 22:537–546. doi:10.1111/j.1365-2435.2008.01390.x CrossRefGoogle Scholar
  8. Bloor JMG, Niboyet A, Leadley PW, Barthes L (2009) CO2 and inorganic N supply modify competition for N between co-occurring grass plants, tree seedlings and soil microorganisms. Soil Biol Biochem 41:544–552. doi:10.1016/j.soilbio.2008.12.013 CrossRefGoogle Scholar
  9. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157. doi:10.1890/04-0988 CrossRefGoogle Scholar
  10. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  11. Brooks PD, Stark JM, McInteer BB, Preston T (1989) Diffusion methods to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci Soc Am J 53:1707–1711Google Scholar
  12. Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617. doi:10.1038/364616a0 CrossRefGoogle Scholar
  13. Dijkstra FA, Hobbie SE, Reich PB, Knops JMH (2005) Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant Soil 272:41–52. doi:10.1007/s11104-004-3848-6 CrossRefGoogle Scholar
  14. Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225. doi:10.1111/j.1365-3040.1995.tb00630.x CrossRefGoogle Scholar
  15. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8 CrossRefGoogle Scholar
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constitutents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 129–234Google Scholar
  17. Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: SSSo America (Ed) Methods of soil analysis Part 2 Microbiological and Biochemical Properties. Wisconsin, USA, pp 985–1018Google Scholar
  18. Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45Google Scholar
  19. Hoosbeek M, Li Y, Scarascia-Mugnozza G (2006) Free atmospheric CO2 enrichment (FACE) increased labile and total carbon in the mineral soil of a short rotation poplar plantation. Plant Soil 281:247–254. doi:10.1007/s11104-005-4293-x CrossRefGoogle Scholar
  20. Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 109:188–191. doi:10.1038/35051576 CrossRefGoogle Scholar
  21. Hu S, Tu C, Chen X, Gruver JB (2006) Progressive N limitation of plant response to elevated CO2: a microbial perspective. Plant Soil 289:47–58. doi:10.1007/s11104-006-9093-4 CrossRefGoogle Scholar
  22. Hungate BA (1999) Ecosystems responses to rising atmospheric CO2: feedbacks through the Nitrogen cycle. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic, San Diego, USA, pp 265–285CrossRefGoogle Scholar
  23. Hungate BA, Lund CP, Pearson HL, Chapin FS III (1997) Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochem 37:89–109. doi:10.1023/A:1005747123463 CrossRefGoogle Scholar
  24. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513. doi:10.1126/science.1091390 CrossRefPubMedGoogle Scholar
  25. Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95. doi:10.1023/A:1004298309606 CrossRefGoogle Scholar
  26. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Proc 18:33–34CrossRefGoogle Scholar
  27. Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S (2008) Assessment of soil nitrogen and phosphorus availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant Soil 308:131–147. doi:10.1007/s11104-008-9614-4 CrossRefGoogle Scholar
  28. Le Roux X, Poly F, Currey P, Commeaux C, Hai B, Nicol GW, Prosser JI, Scholter M, Attard E, Klumpp K (2008) Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J 2:221–232. doi:10.1038/ismej.2007.109 CrossRefPubMedGoogle Scholar
  29. Lensi R, Mazurier S, Gourbière F, Josserand A (1986) Rapid determination of the nitrification potential of an acid forest soil and assessment of its variability. Soil Biol Biochem 18:239–240. doi:10.1016/0038-0717(86)90035-0 CrossRefGoogle Scholar
  30. Mary B, Recous S, Robin D (1998) A model for calculating nitrogen fluxes in soil using 15N tracing. Soil Biol Biochem 30:1963–1979. doi:10.1016/S0038-0717(98)00068-6 CrossRefGoogle Scholar
  31. Murphy DV, Recous S, Stockdale EA, Fillery IRP, Jensen LS, Hatch DJ, Goulding KWT (2003) Gross nitrogen fluxes in soil: theory, measurement and application of 15N pool dilution techniques. Adv Agron 79:69–118. doi:10.1016/S0065-2113(02)79002-0 CrossRefGoogle Scholar
  32. Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonié L, Couteaux MM, Roy J, Philoppot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities. Soil Biol Biochem 39:33–42. doi:10.1016/j.soilbio.2006.05.018 CrossRefGoogle Scholar
  33. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006a) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925. doi:10.1038/nature04486 CrossRefPubMedGoogle Scholar
  34. Reich PB, Hungate BA, Luo Y (2006b) Carbon-Nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst 37:611–636. doi:10.1146/annurev.ecolsys.37.091305.110039 CrossRefGoogle Scholar
  35. Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261–267. doi:10.1016/0038-0717(79)90071-3 CrossRefGoogle Scholar
  36. Tiedje JM (1982) Denitrification. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. American Society of Agronomy, Madison, pp 1011–1026Google Scholar
  37. Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Environmental microbiology of anaerobes. Wiley, New York, pp 179–244Google Scholar
  38. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochem 13:87–115. doi:10.1007/BF00002772 CrossRefGoogle Scholar
  39. Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi:10.1016/S0038-0717(01)00096-7 CrossRefGoogle Scholar
  40. Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117. doi:10.1007/BF00010791 CrossRefGoogle Scholar
  41. Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10:47–59Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Audrey Niboyet
    • 1
    • 2
  • Laure Barthes
    • 1
  • Bruce A. Hungate
    • 3
  • Xavier Le Roux
    • 4
  • Juliette M. G. Bloor
    • 5
  • Annick Ambroise
    • 1
  • Sandrine Fontaine
    • 1
  • Peter M. Price
    • 3
  • Paul W. Leadley
    • 1
  1. 1.Laboratoire Ecologie, Systématique, et Evolution, UMR 8079 Université Paris-Sud / CNRS / AgroParisTechUniversité Paris-SudOrsayFrance
  2. 2.Laboratoire Biogéochimie et Ecologie des Milieux Continentaux, UMR 7618 UPMC / CNRSEcole Normale SupérieureParisFrance
  3. 3.Colorado Plateau Stable Isotope Laboratory, Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  4. 4.Laboratoire d’Ecologie Microbienne, UMR 5557 Université Lyon 1 / CNRS, USC 1193 INRAUniversité de LyonVilleurbanneFrance
  5. 5.UR874 Grassland Ecosystem Research UnitINRAClermont-FerrandFrance

Personalised recommendations