Plant and Soil

, Volume 326, Issue 1–2, pp 393–401 | Cite as

Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations

  • Baohua Xie
  • Xunhua Zheng
  • Zaixing Zhou
  • Jiangxin Gu
  • Bo Zhu
  • Xin Chen
  • Yi Shi
  • Yiyong Wang
  • Zhichun Zhao
  • Chunyan Liu
  • Zhisheng Yao
  • Jianguo Zhu
Regular Article

Abstract

There is an ongoing discussion of the possible effects of nitrogen (N) application on methane (CH4) emission from rice fields. However, the Intergovernmental Panel on Climate Change (IPCC) methodologies for estimating the national inventory of CH4 emission from paddy rice production do not consider the effects of N addition. To assess the lack of knowledge about N addition effects on inventory estimates, we recently launched a multi-site observation campaign in major rice cultivation regions of China. The observations showed that, across various climate zones, the application of ammonium-based fertilizers at the commonly-adopted levels for fields in China (150 or 250 kg N ha−1) generally inhibited accumulative CH4 emission during rice season (by 28–30% on average) as compared to no N addition. An increase in application from the moderate level of 150 kg N ha−1 to the high rate of 250 kg N ha−1 did not significantly modify CH4 emission. Our results suggest that disregarding the effect of N fertilization by the IPCC methodologies may not significantly bias CH4 inventory estimates of China. In regions with much lower N addition levels, however, disregarding the effect of N fertilization may result in the underestimation of regional CH4 emission, since these emissions were mainly derived from studies in regions with relatively high N addition rates.

Keywords

Ammonium-based Inventory Biomass Oxidation 

References

  1. Bodelier PLE, Laanbroek JH (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277. doi:10.1016/S0168-6496(03)00304-0 CrossRefPubMedGoogle Scholar
  2. Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000a) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424. doi:10.1038/35000193 CrossRefGoogle Scholar
  3. Bodelier PLE, Han AP, Arth IR, Frenzel P (2000b) Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry 51:225–257. doi:10.1023/A:1006438802362 CrossRefGoogle Scholar
  4. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196:7–14. doi:10.1023/A:1004263405020 CrossRefGoogle Scholar
  5. Cai Z, Mosier A (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32:1537–1545. doi:10.1016/S0038-0717(00)00065-1 CrossRefGoogle Scholar
  6. Cai Z, Shan Y, Xu H (2007) MINI-REVIEW: effects of nitrogen fertilization on CH4 emission from rice fields. Soil Sci Plant Nutr 53:353–361. doi:10.1111/j.1747-0765.2007.00153.x CrossRefGoogle Scholar
  7. Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res 56:7–39. doi:10.1016/S0378-4290(97)00140-8 CrossRefGoogle Scholar
  8. Cheng W, Chander K, Inubushi K (2000) Effects of elevated CO2 and temperature on methane production and emission from submerged soil microcosm. Nutr Cycl Agroecosyst 58:339–347. doi:10.1023/A:1009827626715 CrossRefGoogle Scholar
  9. Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosyst 64:59–69. doi:10.1023/A:1021178713988 CrossRefGoogle Scholar
  10. Denier van der Gon HAC, Neue HU (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochem Cycles 9:11–12. doi:10.1029/94GB03197 CrossRefGoogle Scholar
  11. Jia Z, Cai Z, Tsuruta H (2006) Effect of rice cultivar on CH4 production potential of rice soil and CH4 emission in a pot experiment. Soil Sci Plant Nutr 52:341–348. doi:10.1111/j.1747-0765.2006.00043.x CrossRefGoogle Scholar
  12. Huang Y, Jiao Y, Zong L, Zheng X, Sass RL, Fisher FM (2002) Quantitative dependence of methane emission on soil properties. Nutr Cycl Agroecosyst 64:157–167. doi:10.1023/A:1021132330268 CrossRefGoogle Scholar
  13. Huetsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol Biochem 26:1613–1622. doi:10.1016/0038-0717(94)90313-1 CrossRefGoogle Scholar
  14. IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds). Published: IGES, JapanGoogle Scholar
  15. IPCC (2007) Climate Change 2007. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  16. Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Glob Change Biol 7:49–63. doi:10.1046/j.1365-2486.2001.00395.x CrossRefGoogle Scholar
  17. Krüger M, Frenzel P (2003) Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob Change Biol 9:773–784. doi:10.1046/j.1365-2486.2003.00576.x CrossRefGoogle Scholar
  18. Lindau CW, Delaune RD, Patrick WH, Bolloch PK (1990) Fertilizer effects on dinitrogen, nitrous oxide, and methane emissions from lowland rice. Soil Sci Soc Am J 54(6):1789–1794CrossRefGoogle Scholar
  19. Ma J, Xu H, Yagi K, Cai Z (2008) Methane emission from paddy soils as affected by wheat straw returning mode. Plant Soil 313:167–174. doi:10.1007/s11104-008-9689-y CrossRefGoogle Scholar
  20. Minami K (1994) Methane from rice production. Fert Res 37:167–169. doi:10.1007/BF00748935 CrossRefGoogle Scholar
  21. Mitra S, Wassmann R, Jain MC, Pathak H (2002) Properties of rice soils affecting methane production potentials: 1. Temporal patterns and diagnostic procedures. Nutr Cycl Agroecosyst 64:169–182. doi:10.1023/A:1021198714896 CrossRefGoogle Scholar
  22. Scheid D, Stubner S, Conrad R (2003) Effects of nitrate-and sulfate-amendment on the methanogenic populations in rice root incubations. FEMS Microbiol Ecol 43:309–315. doi:10.1111/j.1574-6941.2003.tb01071.x CrossRefPubMedGoogle Scholar
  23. Schimel J (2000) Global change: rice, microbes and methane. Nature 403:375–377. doi:10.1038/35000325 CrossRefPubMedGoogle Scholar
  24. Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416. doi:10.1029/JD094iD13p16405 CrossRefGoogle Scholar
  25. De Visscher A, Cleemput OV (2003) Induction of enhanced CH4 oxidation in soils: NH4+ inhibition patterns. Soil Biol Biochem 35:907–913. doi:10.1016/S0038-0717(03)00122-6 CrossRefGoogle Scholar
  26. Wang YS, Wang YH (2003) Quick measurement of CH4 CO2 and N2O emissions from a short-plant ecosystem. Adv Atmos Sci 20:842–844. doi:10.1007/BF02915410 CrossRefGoogle Scholar
  27. Wassmann R, Aulakh MS, Lantin RS, Rennenberg H, Aduna JB (2002) Methane emission patterns from rice fields planted to several rice cultivars for nine seasons. Nutr Cycl Agroecosyst 64:111–124. doi:10.1023/A:1021171303510 CrossRefGoogle Scholar
  28. Xu Z, Zheng X, Wang Y, Han S, Huang Y, Zhu J, Butterbach-Bahl K (2004) Effects of elevated CO2 and N fertilization on CH4 emission from paddy rice fields. Global Biogeochem Cycles 18:GB3009. doi:10.1029/2004GB002233 CrossRefGoogle Scholar
  29. Yan X (2008) PhD dissertation: Study on present status of chemical fertilizer application and high efficient utilization of nutrition in China (in Chinese), Chinese Academy of Agricultural Sciences, Beijing, pp 64–78Google Scholar
  30. Zheng X, Wang M, Wang Y, Shen R, Li J, Heyer J, Kogge M, Li L, Jin J (1998) Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Adv Atmos Sci 15:569–579. doi:10.1007/s00376-998-0033-5 CrossRefGoogle Scholar
  31. Zheng X, Zhou Z, Wang Y, Zhu J, Wang Y, Yue J, Shi Y, Kobayashi K, Inubushi K, Huang Y, Han S, Xu Z, Xie B, Butterbach-Bahl K, Yang L (2006) Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Glob Change Biol 12:1717–1732. doi:10.1111/j.1365-2486.2006.01199.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Baohua Xie
    • 1
    • 2
  • Xunhua Zheng
    • 1
    • 7
  • Zaixing Zhou
    • 1
  • Jiangxin Gu
    • 1
  • Bo Zhu
    • 3
  • Xin Chen
    • 4
  • Yi Shi
    • 4
  • Yiyong Wang
    • 5
  • Zhichun Zhao
    • 2
    • 5
  • Chunyan Liu
    • 1
  • Zhisheng Yao
    • 1
  • Jianguo Zhu
    • 6
  1. 1.State Key Laboratory of Atmospheric Bounder Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP)Chinese Academy of Sciences (CAS)BeijingChina
  2. 2.Graduate University of the Chinese Academy of Sciences (GUCAS)BeijingChina
  3. 3.Institute of Mountain Hazards and Environment (IMHE), CASChengduChina
  4. 4.Institute of Applied Ecology (IAE), CASShenyangChina
  5. 5.Northeast Institute of Geography and Agroecology (NEIGAE), CASChangchunChina
  6. 6.State Key Laboratory of Soil and Sustainable AgricultureInstitute of Soil Science (ISS), CASNanjingChina
  7. 7.LAPC, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations