Skip to main content

Advertisement

Log in

Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen PC, Rhoads FM, Olson SM, Hill KD (1999) Carbon and nitrogen budgets in spring and fall tomato crops. HortScience 34:648–652

    Google Scholar 

  • Bateman IJ, Ennew C, Lovett AA, Rayner AJ (1999) Modelling and mapping agricultural output values using farm specific details and environmental databases. J Agric Econ 50:488–511

    Google Scholar 

  • Berard LS (1990) Effects of nitrogen-fertilization on stored cabbage. 1. Development of physiological disorders on tolerant and susceptible cultivars. J Hortic Sci 65:289–296

    CAS  Google Scholar 

  • Bianco VV, Elia G, De Palma E (1996) Dosi di azoto, scarducciatura, epoca di raccolta, produzione e qualità del carciofo. Atti III Giornate scientifiche SOI 481–482

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  • Cembali T, Folwell RJ, Huffaker RG, McCluskey JJ, Wandschneider PR (2007) Economics of alternative simulated manual asparagus harvesting strategies. Agric Syst 92:266–294. doi:10.1016/j.agsy.2006.03.009

    Article  Google Scholar 

  • Colauzzi M, Calzolari P, Cuter M, Bonomi L, Schiavi M (2003) Optimisation of water and nitrogen in potato cultivation. L’ Informatore Agrario 59:37–42

    Google Scholar 

  • Csizinszky AA (1996) Optimum planting time, plant spacing, and nitrogen and potassium rates to maximize yield of green cauliflower. HortScience 31:930–933

    Google Scholar 

  • Cuttle SP (2006) Development of the FBC model to estimate the nitrogen available from fertility-building crops in organic rotations. Asp Appl Biol 79:259–262

    Google Scholar 

  • Damato G, Manolio G, Bianco VV (1998) Sowing dates, nitrogen rates, pruning and yield of Lagenaria siceraria (Molina) Standl. in southern Italy. Acta Hortic 467:295–303

    Google Scholar 

  • Djurovka M, Markovic V, Ilin Z (1997) The effect of nitrogen fertilizer on the dry matter content and mineral elements in radish. Acta Hortic 462:139–144

    Google Scholar 

  • Elia A, Paolicelli F, Bianco VV (1991) Effect of sowing date, plant density and nitrogen fertilizer on artichoke (Cynara scolymus L.): preliminary results. Adv Hortic Sci 5:119–122

    Google Scholar 

  • Evers AM, Ketoja E, Hagg M, Plaami S, Hakkinen U, Pessala R (1997) Decreased nitrogen rates and irrigation effect on celery yield and internal quality. Plant Foods Hum Nutr 51:173–186. doi:10.1023/A:1007916031818

    Article  CAS  PubMed  Google Scholar 

  • Faeth P, Repetto R, Kroll K, Dai Q, Helmets G (1991) Paying the farm bill: U.S. agricultural policy and the transition to sustainable agriculture. World Resources Institute, Washington DC, p 71

    Google Scholar 

  • Falzari LM, Menary RC, Dragar VA (2006) Optimum stand density for maximum essential oil yield in commercial fennel crops. HortScience 41:646–650

    Google Scholar 

  • Ferrari S, Furlani E, Ferrari JV, Santos ML, dos Santos DMA (2008) Development and yield of the cotton plant under different row spacings and growth regulator application. Acta Scientiarum-Agronomy 30:365–371

    Google Scholar 

  • Fink M, Scharpf H (1993) N-Expert—a decision support system for vegetable fertilization in the field. Acta Hortic 339:67–74

    Google Scholar 

  • Foti S, Mauromicale G, Ierna A (2005) Response of seed-grown globe artichoke to different levels of nitrogen fertilization and water supplies. Acta Hortic 681:237–242

    Google Scholar 

  • Francescangeli N, Sangiacomo MA, Marti H (2006) Effects of plant density in broccoli on yield and radiation use efficiency. Sci Hortic (Amsterdam) 110:135–143. doi:10.1016/j.scienta.2006.06.025

    Article  Google Scholar 

  • Galdeano-Gomez E (2008) Does an endogenous relationship exist between environmental and economic performance? A resource-based view on the horticultural sector. Environ Resour Econ 40:73–89. doi:10.1007/s10640-007-9141-4

    Article  Google Scholar 

  • Gaviola S, Lipinski V, Nijensohn L (1998) Response of onions for drying to fertilization. Cienc Suelo 16:119–121

    Google Scholar 

  • Greenwood DJ (2001) Modeling N-response of field vegetable crops grown under diverse conditions with N_ABLE: A review. J Plant Nutr 24:1799–1815. doi:10.1081/PLN-100107313

    Article  CAS  Google Scholar 

  • Greenwood DJ, Neeteson JJ, Draycott A (1986) Quantitative relationships for the dependence of growth-rate of arable crops on their nitrogen-content, dry-weight and aerial environment. Plant Soil 91:281–301. doi:10.1007/BF02198111

    Article  Google Scholar 

  • Gutierrez AP, Mariot EJ, Cure JR, Riddle CSW, Ellis CK, Villacorta AM (1994) A model of bean (Phaseolus vulgaris L.) growth types I–III—Factors affecting yield. Agric Syst 44:35–63. doi:10.1016/0308-521X(94) 90014-7

    Article  Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter-wheat using the Danish simulation-model DAISY. Fert Res 27:245–259. doi:10.1007/BF01051131

    Article  CAS  Google Scholar 

  • Hay RKM (1995) Harvest index—a review of its use in plant breeding and crop physiology. Ann Appl Biol 126:197–216. doi:10.1111/j.1744-7348.1995.tb05015.x

    Article  Google Scholar 

  • Hughes D, Butcher W, Jaradat A, Penaranda W (1995) Economic analysis of the long-term consequences of farming practices in the barley cropping area of Jordan. Agric Syst 47:39–58. doi:10.1016/0308-521X(94) P3274-X

    Article  Google Scholar 

  • Hussaini MA, Amans EB, Ramalan AA (2000) Yield, bulb size distribution, and storability of onion (Allium cepa L.) under different levels of N fertilization and irrigation regime. Trop. Agric. 77:145–149

    Google Scholar 

  • Inam A (2002) Effect of nitrogen application on the marketable yield of turnip. Adv Plant Sci 15:641–643

    Google Scholar 

  • Jensen LS, Salo T, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundström C, Esala M (2005) Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 273:307–326. doi:10.1007/s11104-004-8128-y

    Article  CAS  Google Scholar 

  • Jett LW, Morse RD, Odell CR (1995) Plant-density effects on single-head broccoli production. HortScience 30:50–52

    Google Scholar 

  • Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (2007) Modelling water and nutrient dynamics in soil-crop systems: a comparison of simulation models applied on common data sets. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil crop systems. Springer, Stuttgart, pp 1–17

    Chapter  Google Scholar 

  • Kirnak H, Tas I, Kaya C, Higgs D (2002) Effects of deficit irrigation on growth, yield, and fruit quality of eggplant under semi-arid conditions. Aust J Agric Res 53:1367–1373. doi:10.1071/AR02014

    Article  Google Scholar 

  • Kirnak H, Kaya C, Higgs D, Tas I (2003) Responses of drip irrigated bell pepper to water stress and different nitrogen levels with or without mulch cover. J Plant Nutr 26:263–277. doi:10.1081/PLN-120017135

    Article  CAS  Google Scholar 

  • Koopmans CJ, Bokhorst J (2002) Nitrogen mineralisation in organic farming systems: a test of the NDICEA model. Agronomie 22:855–862. doi:10.1051/agro:2002046

    Article  Google Scholar 

  • Lehtonen H, Barlund I, Tattari S, Hilden M (2007) Combining dynamic economic analysis and environmental impact modelling: addressing uncertainty and complexity of agricultural development. Environ Model Softw 22:710–718. doi:10.1016/j.envsoft.2005.12.028

    Article  Google Scholar 

  • Lindgren U, Elmquist H (2005) Environmental and economic impacts of decision-making at an arable farm: An integrative modeling approach. Ambio 34:393–401

    PubMed  Google Scholar 

  • Managi S, Karemera D (2005) Trade and environmental damage in US agriculture. World Rev Sci Technol Sust Dev 2:168–190. doi:10.1504/WRSTSD.2005.007302

    Article  Google Scholar 

  • Marcelis LFM, Heuvelink E, Goudriaan J (1998) Modelling biomass production and yield of horticultural crops: a review. Sci Hortic (Amsterdam) 74:83–111. doi:10.1016/S0304-4238(98) 00083-1

    Article  Google Scholar 

  • Münier B, Birr-Pedersen K, Schou JS (2004) Combined ecological and economic modelling in agricultural land use scenarios. Ecol Modell 174:5–18. doi:10.1016/j.ecolmodel.2003.12.040

    Article  Google Scholar 

  • Nendel C (2009) Evaluation of best management practises for N fertilisation in regional field vegetable production with a small scale simulation model. Eur J Agron 30:110–118. doi:10.1016/j.eja.2008.08.003

    Article  CAS  Google Scholar 

  • Pacini C, Wossink A, Giesen G, Huirne R (2004) Ecological-economic modelling to support multi-objective policy making: a farming systems approach implemented for Tuscany. Agric Ecosyst Environ 102:349–364. doi:10.1016/j.agee.2003.08.010

    Article  Google Scholar 

  • Padel S (2002) Development of software to plan conversion to organic production (OrgPlan). In: J Powell (ed) UK Organic Research 2002—Proceedings of the COR Conference. Aberystwyth, pp 169–172

  • Parisi M, Giordano I, Pentangelo A, Villari G (2006) Effects of different levels of nitrogen fertilization on yield and fruit quality in processing tomato. Acta Hortic 700:129–132

    Google Scholar 

  • Pimpini F, Filippini MF, Sambo P, Gianquinto G, Lazzarin R (2000) Fertilization effects on nitrate content in two types of red chicory. Riv Agron 34:406–418

    Google Scholar 

  • Pimpini F, Filippini MF, Sambo P, Gianquinto G, Lazzarin R (2002) Effect of fertilisation on yield of red chicory “Rosso di Chioggia” and “Rosso di Treviso” grown in two different environments. Riv Agron 36:89–97

    Google Scholar 

  • Plenet D, Lemaire G (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:65–82. doi:10.1023/A:1004783431055

    Article  CAS  Google Scholar 

  • Rahn CR, Greenwood DJ, Draycott A (1996) Prediction of nitrogen fertiliser requirement with HRI WELL_N computer model. In: van Cleemput O, Hofman G, Vermoesen A (eds) Progress in Nitrogen Cycling (Proceedings of the 8th Nitrogen Fixation Workshop, Ghent, 5–8 September 1994). Kluwer, Dordrecht, pp 255–258

    Google Scholar 

  • Rahn CR, Zang K, Lillywhite RD, Ramos C, De Paz JM, Doltra J, Riley H, Fink M, Nendel C, Thorup-Kristensen K, Pedersen A, Piro F, Venezia A, Firth C, Schmutz U, Rayns F, Strohmeyer K (2007) Using the EU-Rotate_N model to forecast the effects of nitrate legislation on the economic output and environmental benefits in crop rotations. In: S De Neve, J Salomez, A van den Bossche, S Haneklaus, O van Cleemput, G Hofman and E Schnug (eds) Mineral versus organic fertilization—Conflict or synergism? International Scientific Centre of Fertilizers, Braunschweig, Budapest, Vienna, pp 433–439

  • Rather K, Schenk M (2005) Nitrogen and curd compactness of cauliflower (Brassica oleracea var. botrytis) F-1-hybrid. Eur J Hortic Sci 70:60–66

    CAS  Google Scholar 

  • Rejesus RM, Hornbaker RH (1999) Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agric Ecosyst Environ 75:41–53. doi:10.1016/S0167-8809(99) 00058-4

    Article  Google Scholar 

  • Resende FV, Oliveira P, Souza R (2000) Growth, yield and nitrogen uptake in garlic produced by tissue culture, cultivated under high nitrogen levels. Hortic Bras 18:31–36

    Google Scholar 

  • Ribaudo MO, Heimlich R, Claassen R, Peters M (2001) Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. Ecol Econ 37:183–197. doi:10.1016/S0921-8009(00) 00273-1

    Article  Google Scholar 

  • Ritchie JT (1998) Soil water balance and plant water stress. In: GY Tsuji, G Hoogenboom, PKThornton (eds) Kluwer Academic Publisher, Doordrecht, pp 41–54

  • Rosati A, Escobar-Gutierrez A, Burns I (2002) First attempt to simulate the response of aubergine crops to N supply: a means to optimise N fertilisation. Acta Hortic 571:137–142

    Google Scholar 

  • Rosen CJ, Tong CBS (2001) Yield, dry matter partitioning, and storage quality of hardneck garlic as affected by soil amendments and scape removal. HortScience 36:1235–1239

    Google Scholar 

  • Rumpel J (1998) Effect of long-term organic, mineral, and combined organic-mineral fertilization on yield of onions (Allium cepa L.) grown from seeds. Biuletyn Warzywniczy 48:5–15

    Google Scholar 

  • Rumpel J, Kaniszewski S (1994) Influence of nitrogen fertilization on yield and nitrate nitrogen content of turnip-rooted parsley. Acta Hortic 371:413–419

    CAS  Google Scholar 

  • Santos BM, Morales-Payan JP, Stall WM, Bewick TA (1998) Influence of purple nutsedge (Cyperus rotundus) density and nitrogen rate on radish (Raphanus sativus) yield. Weed Sci 46:661–664

    CAS  Google Scholar 

  • Scaife A, Wurr DCE (1990) Effects of nitrogen and irrigation on hollow stem of cauliflower (Brassica oleracea var. botrytis). J Hortic Sci 65:25–29

    Google Scholar 

  • Scaziota B, Marco G, Palchetti E, Rocca F, Vecchio V (2002) How to distribute N in out-of-season potato crops. L’. Informatore Agrario 58:63–65

    Google Scholar 

  • Schou JS, Skop E, Jensen JD (2000) Integrated agri-environmental modelling: A cost-effectiveness analysis of two nitrogen tax instruments in the Vejle Fjord watershed, Denmark. J Environ Manage 58:199–212. doi:10.1006/jema.2000.0325

    Article  Google Scholar 

  • Temperini O, Colla G, Saccardo F, Brancaleone M (2000) Fertilizer application and choice of variety as the basis for improving celery yield. Informatore Agrario 56:95–98

    Google Scholar 

  • The Council of the European Communities Council directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). L 375. (1991). Brussels. Official Journal

  • Thompson TL, Doerge TA, Godin RE (2000) Nitrogen and water interactions in subsurface drip-irrigated cauliflower: 1. Plant response. Soil Sci Soc Am J 64:406–411

    Article  CAS  Google Scholar 

  • Ugur A, Bozokalfa M, Esiyok D (2004) Effects of harvest stage and nitrogen doses on yield and quality of endive (Cichorium endivia L.). Ege Universitesi Ziraat Fakultesi Derg 41:1–8

    Google Scholar 

  • van der Burgt GJHM, Oomen GJM, Habets ASJ, Rossing WAH (2006) The NDICEA model, a tool to improve nitrogen use efficiency in cropping systems. Nutr Cycl Agroecosyst 74:275–294. doi:10.1007/s10705-006-9004-3

    Article  CAS  Google Scholar 

  • van Henten EJ (1994) Validation of a dynamic lettuce growth model for greenhouse climate control. Agric Syst 45:55–72. doi:10.1016/S0308-521X(94) 90280-1

    Article  Google Scholar 

  • Vatn A, Bakken L, Botterweg P, Romstad E (1999) ECECMOD: an interdisciplinary modelling system for analyzing nutrient and soil losses from agriculture. Ecol Econ 30:189–205. doi:10.1016/S0921-8009(98) 00116-5

    Article  Google Scholar 

  • Wang E, Robertson MJ, Hammer GL, Carberry PS, Holzworth D, Meinke H, Chapman SC, Hargreaves JNG, Huth NI, McLean G (2002) Development of a generic crop model template in the cropping system model APSIM. Eur J Agron 18:121–140. doi:10.1016/S1161-0301(02) 00100-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the provision of white cabbage and cauliflower data by Carmen Feller of IGZ Großbeeren, Germany. The work received EU funding within the project QLRT-2002-01100—Development of a model based decision support system to optimise nitrogen use in horticultural crop rotations across Europe (EU-ROTATE_N), co-ordinated by Warwick HRI, UK (C.R. Rahn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Nendel.

Additional information

Responsible Editor: Ute Skiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nendel, C., Schmutz, U., Venezia, A. et al. Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels. Plant Soil 325, 319–334 (2009). https://doi.org/10.1007/s11104-009-0015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0015-0

Keywords

Navigation