Skip to main content
Log in

Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

For decades, the term “rhizosphere fauna” has been used as a synonym to denote agricultural pests among root herbivores, mainly nematodes and insect larvae. We want to break with this constrictive view, since the connection between plants and rhizosphere fauna is far more complex than simply that of resource and consumer. For example, plant roots have been shown to be neither defenceless victims of root feeders, nor passive recipients of nutrients, but instead play a much more active role in defending themselves and in attracting beneficial soil microorganisms and soil fauna. Most importantly, significant indirect feed-backs exist between consumers of rhizosphere microorganisms and plant roots. In fact, the majority of soil invertebrates have been shown to rely profoundly on the carbon inputs from roots, breaking with the dogma of soil food webs being mainly fueled by plant litter input from aboveground. In this review we will highlight areas of recent exciting progress and point out the black boxes that still need to be illuminated by rhizosphere zoologists and ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Albers D, Schaefer M, Scheu S (2006) Incorporation of plant carbon into the soil animal food web of an arable system. Ecology 87:235–245. doi:10.1890/04-1728

    Article  PubMed  Google Scholar 

  • Arndt H, Schmidt-Denter K, Auer B, Weitere M (2003) Protozoans and biofilms. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Kluwer Academic, Dordrecht, pp 173–189

    Google Scholar 

  • Ayres E, Dromph KM, Cook R, Ostle N, Bardgett RD (2007) The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants. Funct Ecol 21:256–263. doi:10.1111/j.1365-2435.2006.01227.x

    Article  Google Scholar 

  • Bais H, Park S, Weir T, Callaway R, Vivanco J (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi:10.1016/j.tplants.2003.11.008

    Article  PubMed  CAS  Google Scholar 

  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  PubMed  CAS  Google Scholar 

  • Bakonyi G, Posta K, Kiss I, Fábián M, Nagy P, Nosek JN (2002) Density-dependent regulation of arbuscular mycorrhiza by collembola. Soil Biol Biochem 34:661–664. doi:10.1016/S0038-0717(01)00228-0

    Article  CAS  Google Scholar 

  • Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014. doi:10.1016/S0038-0717(99)00014-0

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268. doi:10.1890/02-0274

    Article  Google Scholar 

  • Bardgett R, Wardle D, Yeates G (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878. doi:10.1016/S0038-0717(98)00069-8

    Article  CAS  Google Scholar 

  • Bardgett R, Cook R, Yeates G, Denton C (1999a) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33. doi:10.1023/A:1004642218792

    Article  CAS  Google Scholar 

  • Bardgett R, Denton C, Cook R (1999b) Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecol Lett 2:357–360. doi:10.1046/j.1461-0248.1999.00001.x

    Article  Google Scholar 

  • Bauer W, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433. doi:10.1016/j.pbi.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  • Beale E, Li G, Tan M-W, Rumbaugh KP (2006) Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135–5137

    Article  PubMed  CAS  Google Scholar 

  • Beare M, Coleman D, Crossley D, Hendrix P, Odum E (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22. doi:10.1007/BF02183051

    Article  CAS  Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Phytium root rot. FEMS Microbiol Ecol 28:225–233. doi:10.1111/j.1574-6941.1999.tb00578.x

    Article  CAS  Google Scholar 

  • Bezemer TM, Van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624. doi:10.1016/j.tree.2005.08.006

    Article  PubMed  Google Scholar 

  • Bezemer TM, Wagenaar R, Dam NMV, Wäckers FL (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562. doi:10.1034/j.1600-0706.2003.12424.x

    Article  Google Scholar 

  • Bezemer TM, De Deyn GB, Bossinga TM, Van Dam NM, Harvey JA, Van Der Putten WH (2005) Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecol Lett 8:652–661. doi:10.1111/j.1461-0248.2005.00762.x

    Article  Google Scholar 

  • Bjørnlund L, Mørk S, Vestergard M, Rønn R (2006) Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley. Biol Fertil Soils 43:1–11. doi:10.1007/s00374-005-0052-7

    Article  CAS  Google Scholar 

  • Blanc C, Sy M, Djigal D, Brauman A, Normand P, Villenave C (2006) Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. Eur J Soil Biol 42, Suppl 1:S70–S78

    Article  CAS  Google Scholar 

  • Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208

    Article  Google Scholar 

  • Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Leeuwenhoek 81:465–480

    Article  PubMed  Google Scholar 

  • Boff MIC, Zoon FC, Smits PH (2001) Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol Exp Appl 98:329–337. doi:10.1023/A:1018907812376

    Article  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631. doi:10.1111/j.1469-8137.2004.01066.x

    Article  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715. doi:10.1016/S0038-0717(02)00157-8

    Article  CAS  Google Scholar 

  • Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S (2000a) Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147. doi:10.1016/S1164-5563(00)01059-1

    Article  Google Scholar 

  • Bonkowski M, Griffiths B, Scrimgeour C (2000b) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53. doi:10.1016/S0929-1393(99)00047-5

    Article  Google Scholar 

  • Bonkowski M, Griffiths BS, Ritz K (2000c) Food preferences of earthworms for soil fungi. Pedobiologia (Jena) 44:666–676. doi:10.1078/S0031-4056(04)70080-3

    Article  Google Scholar 

  • Bouwman LA, Zwart KB (1994) The ecology of bacterivorous protozoans and nematodes in arable soil. Agric Ecosyst Environ 51:145–160

    Article  Google Scholar 

  • Bracht Jørgensen H, Johansson T, Canbäck B, Hedlund K, Tunlid A (2005) Selective foraging of fungi by collembolans in soil. Biol Lett 1:243–246. doi:10.1098/rsbl.2004.0286

    Article  CAS  Google Scholar 

  • Bretherton S, Tordoff GM, Jones TH, Boddy L (2006) Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiol Ecol 58:33–40. doi:10.1111/j.1574-6941.2006.00149.x

    Article  PubMed  CAS  Google Scholar 

  • Brimecombe M, De Leij F, Lynch J (2000) Effect of introduced Pseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea. Microb Ecol 38:387–397. doi:10.1007/s002489901004

    Article  Google Scholar 

  • Brown V, Gange A (1989) Differential effects of abobe- and below-ground insect herbivory during early plant succession. Oikos 54:67–76. doi:10.2307/3565898

    Article  Google Scholar 

  • Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9:123–135

    Article  Google Scholar 

  • Caldwell KN, Anderson GL, Williams PL, Beuchat LR (2003) Attraction of a free-living nematode, Caenorhabditis elegans, to foodborne pathogenic bacteria and its potential as a vector of Salmonella poona for preharvest contamination of cantaloupe. J Food Prot 66:1964–1971

    PubMed  Google Scholar 

  • Campell BC, Nes WD (1983) A reappraisal of sterol biosynthesis and metabolism in aphids. J Insect Physiol 29:149–156. doi:10.1016/0022-1910(83)90138-5

    Article  Google Scholar 

  • Chakraborty S (1983) Population dynamics of amobae in soils suppressive and non-suppressive to wheat take-all. Soil Biol Biochem 15:661–664. doi:10.1016/0038-0717(83)90029-9

    Article  Google Scholar 

  • Chantanao A, Jensen HJ (1969) Saprozoic nematodes as carriers and disseminators of plant pathogenic bacteria. J Nematol 1:216–218

    PubMed  CAS  Google Scholar 

  • Chanway C, Turkington R, Holl F (1991) Ecological implications of specificity between plants and rhizosphere micro-organisms. Adv Ecol Res 21:121–169. doi:10.1016/S0065-2504(08)60098-7

    Article  Google Scholar 

  • Chen J, Ferris H (1999) The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol Biochem 31:1265–1279. doi:10.1016/S0038-0717(99)00042-5

    Article  CAS  Google Scholar 

  • Christensen M (1989) A view of fungal ecology. Mycologia 81:1–19. doi:10.2307/3759446

    Article  Google Scholar 

  • Christensen S, Bjørnlund L, Vestergard M (2007) Decomposer biomass in the rhizosphere to assess rhizodeposition. Oikos 116:65–74

    Article  CAS  Google Scholar 

  • Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46. doi:10.1016/j.biocontrol.2005.11.016

    Article  Google Scholar 

  • Clapperton MJ, Lee NO, Binet F, Conner RL (2001) Earthworms indirectly reduce the effects of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biol Biochem 33:1531–1538. doi:10.1016/S0038-0717(01)00071-2

    Article  CAS  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187. doi:10.1016/0038-0717(85)90113-0

    Article  CAS  Google Scholar 

  • Clarholm M (1994) The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley-Sayce, Chichester, pp 221–230

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Davis E, Hussey R, Baum T, Bakker J, Schots A (2000) Nematode parasitism genes. Annu Rev Phytopathol 38:365–396. doi:10.1146/annurev.phyto.38.1.365

    Article  PubMed  CAS  Google Scholar 

  • Dawson LA, Grayston SJ, Murray PJ, Pratt SM (2002) Root feeding behaviour of Tipula paludosa (Meig.) (Diptera : Tipulidae) on Loliumn perenne (L.) and Trifolium repens (L.). Soil Biol Biochem 34:609–615. doi:10.1016/S0038-0717(01)00217-6

    Article  CAS  Google Scholar 

  • De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633. doi:10.1016/j.tree.2005.08.009

    Article  PubMed  Google Scholar 

  • De Deyn G, Raaijmakers C, Zoomer H, Berg M, de Ruiter P, Verhoef H, Bezemer T, van der Putten W (2003a) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713. doi:10.1038/nature01548

    Article  PubMed  CAS  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, Van der Putten WH (2003b) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713. doi:10.1038/nature01548

    Article  PubMed  CAS  Google Scholar 

  • De Leij FAAM, Dixon-Hardy JE, Lynch JM (2002) Effect of 2, 4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biol Fertil Soils 35:114–121. doi:10.1007/s00374-002-0448-6

    Article  CAS  Google Scholar 

  • De Mesel I, Derycke S, Moens T, Van Der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744. doi:10.1111/j.1462-2920.2004.00610.x

    Article  PubMed  Google Scholar 

  • Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165. doi:10.1016/S0038-0717(98)00118-7

    Article  CAS  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ . doi:10.1111/j.1365-3040.2008.01913.x

    PubMed  Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Blackie, Glasgow London, p 157

    Google Scholar 

  • Dromph KM (2003) Collembolans as vectors of entomopathogenic fungi. Pedobiologia (Jena) 47:245–256. doi:10.1078/0031-4056-00188

    Article  Google Scholar 

  • Dudley SA, File AL (2007) Kin recognition in an annual plant. Biol Lett 3:435–438. doi:10.1098/rsbl.2007.0232

    Article  PubMed  Google Scholar 

  • Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353. doi:10.1111/j.1574-6976.1994.tb00144.x

    Article  PubMed  CAS  Google Scholar 

  • Elfstrand S, Lagerlöf J, Hedlund K, Mårtensson A (2008) Carbon routes from decomposing plant residues and living roots into soil food webs assessed with 13C labelling. Soil Biol Biochem 40:2530–2539. doi:10.1016/j.soilbio.2008.06.013

    Article  CAS  Google Scholar 

  • Endlweber K, Scheu S (2006) Effects of Collembola on root properties of two competing ruderal plant species. Soil Biol Biochem 38:2025–2031

    Article  CAS  Google Scholar 

  • Endlweber K, Scheu S (2007) Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol Fertil Soils 43:741–749. doi:10.1007/s00374-006-0157-7

    Article  Google Scholar 

  • Erb M, Ton J, Degenhardt J, Turlings TCJ (2008) Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146:867–874

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377. doi:10.1111/j.0269-8463.2005.00969.x

    Article  Google Scholar 

  • Fu SL, Ferris H, Brown D, Plant R (2005) Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol Biochem 37:1979–1987

    Article  CAS  Google Scholar 

  • Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372. doi:10.1016/S0169-5347(00)01940-6

    Article  PubMed  Google Scholar 

  • Gange A, Brown V (1997) Multitrophic interactions in terrestrial systems. Blackwell, Oxford

    Google Scholar 

  • Geltzer JG (1963) On the behaviour of soil amoebae in the rhizospheres of plants. Pedobiologia (Jena) 2:249–251

    Google Scholar 

  • Gheysen G, Jones J (2006) Molecular aspects of plant-nematode interactions. In: Perry R, Moens M (eds) Plant Nematology. CABI, pp 234–254

  • Goellner M, Wang X, Davis EL (2001) Endo-1, 4-glucanase expression in compatible plant nematode interactions. Plant Cell 13:2241–2255

    Article  PubMed  CAS  Google Scholar 

  • Gormsen D, Olsson PA, Hedlund K (2004) The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol 27:211–220

    Article  Google Scholar 

  • Goverse A, Overmars H, Engelbertink J, Schots A, Bakker J, Helder J (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Mol Plant Microbe Interact 13:1121–1129. doi:10.1094/MPMI.2000.13.10.1121

    Article  PubMed  CAS  Google Scholar 

  • Grayston SJ, Dawson LA, Treonis AM, Murray PJ, Ross J, Reid EJ, MacDougall R (2001) Impact of root herbivory by insect larvae on soil microbial communities. Eur J Soil Biol 37:277–280. doi:10.1016/S1164-5563(01)01098-6

    Article  CAS  Google Scholar 

  • Grewal PS (1991) Effects of Caenorhabditis elegans(Nematoda: Rhabditidae) on the spread of the bacterium Pseudomonas tolaasii in mushrooms (Agaricus bisporus). Ann Appl Biol 118:47–55. doi:10.1111/j.1744-7348.1991.tb06084.x

    Article  Google Scholar 

  • Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fertil Soils 9:83–88. doi:10.1007/BF00335867

    Article  Google Scholar 

  • Griffiths BS (1994) Soil nutrient flow. In: Darbyshire J (ed) Soil protozoa. CAB International, Wallingford, pp 65–91

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi:10.1146/annurev.phyto.41.052002.095656

    Article  PubMed  CAS  Google Scholar 

  • Haase S, Ruess L, Neumann G, Marhan S, Kandeler E (2007) Low-level herbivory by root-knot nematodes (Meloidogyne incognita) modifies root hair morphology and rhizodeposition in host plants (Hordeum vulgare). Plant Soil 301:151–164. doi:10.1007/s11104-007-9431-1

    Article  CAS  Google Scholar 

  • Hall M, Hedlund K (1999) A soil mite uses fungal cues in search for its collembolan prey. Pedobiologia (Jena) 43:11–17

    Google Scholar 

  • Harold S, Tordoff GM, Jones TH, Boddy L (2005) Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycol Res 109:927–935. doi:10.1017/S095375620500331X

    Article  PubMed  Google Scholar 

  • Harris KK, Boerner REJ (1990) Effects of belowground grazing by collembola on growth, mycorrhizal infection, and P uptake of Geranium robertianum. Plant Soil 129:203–210

    CAS  Google Scholar 

  • Hatch D, Murray P (1994) Transfer of nitrogen from damaged roots of white clover (Trifolium repens L.) to closely associated roots of intact perennial ryegrass (Lolium perenne L.). Plant Soil 166:181–185. doi:10.1007/BF00008331

    Article  CAS  Google Scholar 

  • Hedlund K, Sjögren Öhrn M (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88:585–591

    Article  Google Scholar 

  • Henderson V, Katznelson H (1961) The effect of plant roots on the nematode population of the soil. Can J Microbiol 7:163–167

    Article  PubMed  CAS  Google Scholar 

  • Herdler S, Kreuzer K, Scheu S, Bonkowskia M (2008) Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Biochem 40:660–668. doi:10.1016/j.soilbio.2007.09.026

    Article  CAS  Google Scholar 

  • Horiuchi J-I, Prithiviraj B, Bais H, Kimball B, Vivanco J (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857. doi:10.1007/s00425-005-0025-y

    Article  PubMed  CAS  Google Scholar 

  • Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J, Riedel K, Eberl L (2004) Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72:7220–7230. doi:10.1128/IAI.72.12.7220-7230.2004

    Article  PubMed  CAS  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1997) Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can J Bot 75:2146–2157

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol Monographs 55:119–140

    Article  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally-occuring auxin transport regulators. Science 241:346–349. doi:10.1126/science.241.4863.346

    Article  PubMed  CAS  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizae. Biol Fertil Soils 20:263–269. doi:10.1007/BF00336088

    Article  Google Scholar 

  • Jezbera J, Hornak K, Simek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339. doi:10.1111/j.1462-2920.2006.01026.x

    Article  PubMed  Google Scholar 

  • Johnson D, Krsek M, Wellington EMH, Stott AW, Cole L, Bardgett RD, Read DJ, Leake JR (2005) Soil invertebrates disrupt carbon flow through fungal networks. Science 309:1047. doi:10.1126/science.1114769

    Article  PubMed  CAS  Google Scholar 

  • Jonas JL, Wilson GWT, White PM, Joern A (2007) Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol Biochem 39:2594–2602

    Article  CAS  Google Scholar 

  • Joseph C, Phillips D (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192. doi:10.1016/S0981-9428(02)00021-9

    Article  CAS  Google Scholar 

  • Joshi A, Chand R, Arun B, Singh R, Ortiz R (2007) Breeding crops for reduced-tillage management in the intensive, rice-wheat systems of South Asia. Euphytica 153:135–151. doi:10.1007/s10681-006-9249-6

    Article  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090. doi:10.1128/AEM.00557-06

    Article  PubMed  CAS  Google Scholar 

  • Jousset A, Scheu S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 22:714–719

    Article  Google Scholar 

  • Jousset A, Péchy-Tarr M, Rochat L, Keel C, Scheu S, Bonkowski M (2009) Cheating and predation determine the toxin production by the biocontrol bacterium Pseudomonas fluorescens CHA0. (submitted)

  • Kampichler C, Rolschewski J, Donnelly DP, Boddy L (2004) Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biol Biochem 36:591–599. doi:10.1016/j.soilbio.2003.12.004

    Article  CAS  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008) Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406. doi:10.1890/07-0471.1

    Article  PubMed  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    CAS  Google Scholar 

  • Kimpinski J, Sturz A (1996) Population growth of a rhabditid nematode on plant growth promoting bacteria from potato tubers and rhizosphere soil. J Nematol 28:682–686

    PubMed  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2001) Animal nitrogen swap for plant carbon. Nature 410:651–652. doi:10.1038/35070643

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN, Kendrick WB (1996) Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fertil Soils 21:43–52. doi:10.1007/BF00335992

    Article  Google Scholar 

  • Klironomos JN, Ursic M (1998) Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biol Fertil Soils 26:250–253. doi:10.1007/s003740050375

    Article  Google Scholar 

  • Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol Lett 225:227–233. doi:10.1016/S0378-1097(03)00517-2

    Article  PubMed  CAS  Google Scholar 

  • Knox OGG, Killham K, Artz RRE, Mullins C, Wilson M (2004) Effect of nematodes on rhizosphere colonization by seed-applied bacteria. Appl Environ Microbiol 70:4666–4671. doi:10.1128/AEM.70.8.4666-4671.2004

    Article  PubMed  CAS  Google Scholar 

  • Köthe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5:343–351. doi:10.1046/j.1462-5822.2003.00280.x

    Article  PubMed  Google Scholar 

  • Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38:1665–1672. doi:10.1016/j.soilbio.2005.11.027

    Article  CAS  Google Scholar 

  • Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB (1990) Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10:22–28

    CAS  Google Scholar 

  • Kuzyakov Y, Friedel J, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:185–1498

    Article  Google Scholar 

  • Laakso J, Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64. doi:10.2307/3546996

    Article  Google Scholar 

  • Larsen T, Gorissen A, Krogh P, Ventura M, Magid J (2007) Assimilation dynamics of soil carbon and nitrogen by wheat roots and Collembola. Plant Soil 295:253–264. doi:10.1007/s11104-007-9280-y

    Article  CAS  Google Scholar 

  • Leake JR, Ostle NJ, Rangel-Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl Soil Ecol 33:152–175. doi:10.1016/j.apsoil.2006.03.001

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769. doi:10.3852/mycologia.97.4.762

    Article  PubMed  Google Scholar 

  • Liu XY, Shi M, Liao YH, Gao Y, Zhang ZK, Wen DH, Wu WZ, An CC (2006) Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress. Microb Ecol 51:315–325. doi:10.1007/s00248-006-9031-2

    Article  Google Scholar 

  • Malamy J, Benfey P (1997) Lateral root formation in Arabidopsis thaliana. Plant Physiol 114:277

    Google Scholar 

  • Mao X, Hu F, Griffiths B, Li H (2006) Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biol Biochem 38:1615–1622

    Article  CAS  Google Scholar 

  • Mao X, Hu F, Griffiths B, Chen X, Liu M, Li H (2007) Do bacterial-feeding nematodes stimulate root proliferation through hormonal effects? Soil Biol Biochem 39:1816–1819. doi:10.1016/j.soilbio.2007.01.027

    Article  CAS  Google Scholar 

  • Mathesius U (2003) Conservation and divergence of signalling pathways between roots and soil microbes—the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119. doi:10.1023/A:1026139026780

    Article  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe B, Bauer W (2003) Extensive and specific responses of a Eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449. doi:10.1073/pnas.262672599

    Article  PubMed  CAS  Google Scholar 

  • Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi:10.1016/j.tim.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  • Matz C, Bergfeld T, Rice SA, Kjelleberg S (2004a) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226. doi:10.1111/j.1462-2920.2004.00556.x

    Article  PubMed  Google Scholar 

  • Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004b) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599. doi:10.1128/AEM.70.3.1593-1599.2004

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2, 4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990–1998. doi:10.1128/AEM.70.4.1990-1998.2004

    Article  PubMed  CAS  Google Scholar 

  • McKenzie Bird D (2004) Signaling between nematodes and plants. Curr Opin Plant Biol 7:372–376. doi:10.1016/j.pbi.2004.05.005

    Article  Google Scholar 

  • Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jurgens K, Macek M, Parry JD, Roberts EC, Simek K (2007) Selective feeding behaviour of key free-living protists: avenues for continued study. In 10th Symposium on Aquatic Microbial Ecology (SAME 10). pp 83–98. Inter-Research, Faro, PORTUGAL.

  • Moore JC, Hunt WH (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263. doi:10.1038/333261a0

    Article  Google Scholar 

  • Munn E, Munn P (2002) Feeding and digestion. In: Lee D (ed) The biology of nematodes. Taylor & Francis, Singapore, pp 211–232

    Google Scholar 

  • Murase J, Noll M, Frenzel P (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72:5436–5444. doi:10.1128/AEM.00207-06

    Article  PubMed  CAS  Google Scholar 

  • Murray PJ, Hatch DJ, Cliquet JB (1996) Impact of insect root herbivory on the growth and nitrogen and carbon contents of white clover (Trifolium repens) seedlings. Can J Bot 74:1591–1595. doi:10.1139/b96-192

    Article  Google Scholar 

  • Muscolo A, Bovalo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biol Biochem 31:1303–1311. doi:10.1016/S0038-0717(99)00049-8

    Article  CAS  Google Scholar 

  • Nardi S, Panuccio MR, Abenavoli MR, Muscolo A (1994) Auxin-like effect of humic substances extracted from faeces of Allolobophora caliginosa and A. rosea. Soil Biol Biochem 26:1341–1346. doi:10.1016/0038-0717(94)90215-1

    Article  CAS  Google Scholar 

  • Newsham KK, Rolf J, Pearce DA, Strachan RJ (2004) Differing preferences of Antarctic soil nematodes for microbial prey. Europ J Soil Biol 40:1–8

    Article  Google Scholar 

  • Ostle N, Briones MJI, Ineson P, Cole L, Staddon P, Sleep D (2007) Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna. Soil Biol Biochem 39:768–777. doi:10.1016/j.soilbio.2006.09.025

    Article  CAS  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Europ J Soil Sci 54:741–750

    Article  Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546. doi:10.1038/nrmicro1180

    Article  PubMed  Google Scholar 

  • Pfander I, Zettel J (2004) Chemical communication in Ceratophysella sigillata (Collembola: Hypogastruridae): intraspecific reaction to alarm substances. Pedobiologia (Jena) 48:575–580. doi:10.1016/j.pedobi.2004.06.002

    Article  Google Scholar 

  • Phillips DA, Streit W (1998) Modifying rhizosphere microbial communities to enhance nutrient availability in cropping systems. Field Crops Res 56:217–221. doi:10.1016/S0378-4290(97)00133-0

    Article  Google Scholar 

  • Phillips D, Joseph C, Yang G, Martinez-Romero E, Sanborn J, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96:12275–12280. doi:10.1073/pnas.96.22.12275

    Article  PubMed  CAS  Google Scholar 

  • Phillips D, Ferris H, Cook D, Strong D (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826

    Article  Google Scholar 

  • Phillips D, Fox T, King M, Bhuvaneswari T, Teuber L (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894. doi:10.1104/pp. 104.044222

    Article  PubMed  CAS  Google Scholar 

  • Pickup ZL, Pickup R, Parry JD (2007) Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Appl Environ Microbiol 73:2631–2634

    Article  PubMed  CAS  Google Scholar 

  • Poll J, Marhan S, Haase S, Hallmann J, Kandeler E, Ruess L (2007) Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere. FEMS Microbiol Ecol 62:268–279. doi:10.1111/j.1574-6941.2007.00383.x

    Article  PubMed  CAS  Google Scholar 

  • Pollierer M, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. doi:10.1111/j.1461-0248.2007.01064.x

    Article  PubMed  Google Scholar 

  • Popeijus H, Overmars H, Jones J, Blok V, Goverse A, Helder J, Schots A, Bakker J, Smant G (2000) Enzymology—Degradation of plant cell walls by a nematode. Nature 406:36–37. doi:10.1038/35017641

    Article  PubMed  CAS  Google Scholar 

  • Puthoff D, Nettleson D, Rodermel S, Baum T (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profile. Plant J 33:911–921. doi:10.1046/j.1365-313X.2003.01677.x

    Article  PubMed  CAS  Google Scholar 

  • Rantalainen ML, Fritze H, Haimi J, Kiikkila O, Pennanen T, Setala H (2004) Do enchytraeid worms and habitat corridors facilitate the colonisation of habitat patches by soil microbes? Biol Fertil Soils 39:200–208

    Article  Google Scholar 

  • Rantalainen M-L, Fritze H, Haimi J, Pennanen T, Setälä H (2005) Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors. Glob Change Biol 11:1614–1627. doi:10.1111/j.1365-2486.2005.000999.x

    Article  Google Scholar 

  • Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880

    Article  PubMed  CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett 10:926–936. doi:10.1111/j.1461-0248.2007.01084.x

    Article  PubMed  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737. doi:10.1038/nature03451

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312. doi:10.1111/j.1469-8137.2005.01558.x

    Article  PubMed  CAS  Google Scholar 

  • Renker C, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microb Ecol 50:518–528. doi:10.1007/s00248-005-5017-8

    Article  PubMed  CAS  Google Scholar 

  • Riga E (2004) Orientation behavior. In: Gaugler R, Bilgrami AL (eds) Nematode behaviour. CABI, Wallingford, pp 63–90

    Google Scholar 

  • Robinson AF (2003) Nematode behaviour and migrations through soil and host tissue. In: Zhongxiao X, Chen SY, Dickson DW (eds) Nematology advances and perspectives. Volume 1, Nematode morphology, physiology, and ecology. CABI, Wallingford, pp 330–405

    Google Scholar 

  • Rodger S, Bengough AG, Griffiths BS, Stubbs V, Young IM (2003) Does the presence of detached root border cells of Zea mays alter the activity of the pathogenic nematode Meloidogyne incognita?. Phytopathology 93:1111–1114. doi:10.1094/PHYTO.2003.93.9.1111

    Article  PubMed  CAS  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269. doi:10.1038/nature04887

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J, The ISME Journal advance online publication 26 February 2009. doi:10.1038/ismej.2009.11

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166. doi:10.1111/j.1574-6941.2008.00465.x

    Article  PubMed  CAS  Google Scholar 

  • Sabatini MA, Innocenti G (2001) Effects of Collembola on plant-pathogenic fungus interactions in simple experimental systems. Biol Fertil Soils 33:62–66. doi:10.1007/s003740000290

    Article  Google Scholar 

  • Schädler M, Jung G, Brandl R, Auge H (2004) Secondary succession is influenced by belowground insect herbivory on a productive site. Oecologia 138:242–252. doi:10.1007/s00442-003-1425-y

    Article  PubMed  Google Scholar 

  • Scheu S (1993) Cellulose and lignin decomposition in soils from different ecosystems on limestone as affected by earthworm processing. Pedobiologia 37:167–177

    CAS  Google Scholar 

  • Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18:94–102. doi:10.1046/j.0269-8463.2004.00807.x

    Article  Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food-webs. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 223–264

    Google Scholar 

  • Scheu S, Simmerling F (2004) Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 139:347–353. doi:10.1007/s00442-004-1513-7

    Article  PubMed  Google Scholar 

  • Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivore and the herbivore system: effects of earthworms and collembola on plant growth and aphid development. Oecologia 119:541–551. doi:10.1007/s004420050817

    Article  Google Scholar 

  • Schulman O, Tiunov A (1999) Leaf litter fragmentation by the earthworm Lumbricus terrestris L. Pedobiologia 43:453–458

    Google Scholar 

  • Seres A, Bakonyi G, Posta K (2007) Collembola (Insecta) disperse the arbuscular mycorrhizal fungi in the soil: pot experiment. Pol J Ecol 55:395–399

    Google Scholar 

  • Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76:1844–1851. doi:10.2307/1940716

    Article  Google Scholar 

  • Shapiro J (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104. doi:10.1146/annurev.micro.52.1.81

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi H, Enami Y, Okano S (2003) Folsomia hidakana (Collembola) prevents damping-off disease in cabbage and Chinese cabbage by Rhizoctonia solani. Pedobiologia (Jena) 47:33–38. doi:10.1078/0031-4056-00167

    Article  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi:10.1128/AEM.71.9.5646-5649.2005

    Article  PubMed  CAS  Google Scholar 

  • Soler R, Bezemer TM, Cortesero AM, Van Der Putten WH, Vet LEM, Harvey JA (2007) Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152:257–264. doi:10.1007/s00442-006-0649-z

    Article  PubMed  Google Scholar 

  • Somasundaram S, Bonkowski M, Iijima M (2008) Functional role of mucilage-border cells: a complex facilitating protozoan effects on plant growth. Plant Prod Sci 11:344–351. doi:10.1626/pps.11.344

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi:10.1111/j.1574-6976.2007.00072.x

    Article  PubMed  CAS  Google Scholar 

  • Stanton NL (1988) The underground in grasslands. Annu Rev Ecol Syst 19:573–589. doi:10.1146/annurev.es.19.110188.003041

    Article  Google Scholar 

  • Steinaker DF, Wilson SD (2008) Scale and density dependent relationships among roots, mycorrhizal fungi and collembola in grassland and forest. Oikos 117:703–710

    Article  Google Scholar 

  • Stephan A, Meyer A, Schmid B (2000) Plant diversity positively affects soil bacterial diversity in experimental grassland ecosystems. J Ecol 88:988–998. doi:10.1046/j.1365-2745.2000.00510.x

    Article  Google Scholar 

  • Stephens P, Davoren C (1997) Influence of the earthworms Aporrectodea trapezoides and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol Biochem 29:511–516. doi:10.1016/S0038-0717(96)00108-3

    Article  CAS  Google Scholar 

  • Sundin P, Valeur A, Olsson S, Odham G (1990) Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiol Ecol 73:13–22

    Article  Google Scholar 

  • Tapilskaja N (1967) Amoeba albida Nägler und ihre Beziehungen zu dem Pilz Verticillium dahliae Kleb, dem Erreger der Welkekrankheit von Baumwollpflanzen. Pedobiologia (Jena) 7:156–165

    Google Scholar 

  • Thimm T, Larink O (1995) Grazing preferences of some collembola for endomycorrhizal fungi. Biol Fertil Soils 19:266–268. doi:10.1007/BF00336171

    Article  Google Scholar 

  • Tiunov A, Scheu S (2005) Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia 142:636–642. doi:10.1007/s00442-004-1758-1

    Article  PubMed  Google Scholar 

  • Tordoff GM, Boddy L, Jones TH (2006) Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina and Resinicium bicolor. Mycol Res 110:335–345. doi:10.1016/j.mycres.2005.11.012

    Article  PubMed  Google Scholar 

  • Tordoff GM, Boddy L, Jones TH (2008) Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biol Biochem 40:434–442. doi:10.1016/j.soilbio.2007.09.006

    Article  CAS  Google Scholar 

  • Treonis AM, Grayston SJ, Murray PJ, Dawson LA (2005) Effects of root feeding, cranefly larvae on soil microorganisms and the composition of rhizosphere solutions collected from grassland plants. Appl Soil Ecol 28:203–215. doi:10.1016/j.apsoil.2004.08.004

    Article  Google Scholar 

  • Treonis AM, Cook R, Dawson L, Grayston SJ, Mizen T (2007) Effects of a plant parasitic nematode (Heterodera trifolii) on clover roots and soil microbial communities. Biol Fertil Soils 43:541–548. doi:10.1007/s00374-006-0133-2

    Article  Google Scholar 

  • Troelstra S, Wagenaar R, Smant W, Paters B (2001) Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors. New Phytol 150:697–706. doi:10.1046/j.1469-8137.2001.00133.x

    Article  CAS  Google Scholar 

  • Tscharntke T, Hawkins B (2002) Multitrophic level interactions. Princeton University Press, New Jersey

    Google Scholar 

  • van Dam NM, Harvey JA, Wäckers FL, Bezemer TM, Van Der Putten WH, Vet LEM (2003) Interactions between aboveground and belowground induced responses against phytophages. Basic Appl Ecol 4:63–77

    Article  Google Scholar 

  • van Ruijven J, De Deyn G, Raaijmakers CE, Berendse F, van der Putten W (2005) Interactions between spatially separated herbivores indirectly alter plant diversity. Ecol Lett 8:30–37. doi:10.1111/j.1461-0248.2004.00688.x

    Article  Google Scholar 

  • van Tol R, van der Sommen A, Boff M, van Bezooijen J, Sabelis M, Smits P (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294. doi:10.1046/j.1461-0248.2001.00227.x

    Article  Google Scholar 

  • Venette R, Ferris H (1998) Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biol Biochem 30:949–960

    Article  CAS  Google Scholar 

  • Venette R, Mostafa F, Ferris H (1997) Trophic interactions between bacterial-feeding nematodes in plant rhizospheres and the nematophagous fungus Hirsutella rhossiliensis to suppress Heterodera schachtii. Plant Soil 191:213–223

    Article  CAS  Google Scholar 

  • Vercauteren I, Engler JD, De Groodt R, Gheysen G (2002) An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematodes. Mol Plant Microbe Interact 15:404–407. doi:10.1094/MPMI.2002.15.4.404

    Article  PubMed  CAS  Google Scholar 

  • Veronico P, Jones J, Di Vito M, De Giorgi C (2001) Horizontal transfer of a bacterial gene involved in polyglutamate biosynthesis to the plant-parasitic nematode Meloidogyne artiellia. FEBS Lett 508:470–474. doi:10.1016/S0014-5793(01)03132-5

    Article  PubMed  CAS  Google Scholar 

  • Vestergård M, Bjørnlund L, Henry F, Ronn R (2007) Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant Soil 295:115–125. doi:10.1007/s11104-007-9267-8

    Article  CAS  Google Scholar 

  • Wardle D (2002) Communities and ecosystems: Linking the aboveground and belowground components. Princeton University Press, New Jersey

    Google Scholar 

  • Wardle DA, Yeates GW (1993) The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. Oecologia 93:303–306

    Article  Google Scholar 

  • Weekers PHH, Bodelier PLE, Wijen JPH, Vogels GD (1993) Effects of grazing by the free-living soil amobae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on various bacteria. Appl Environ Microbiol 59:2317–2319

    PubMed  CAS  Google Scholar 

  • Weisse T (2002) The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Leeuwenhoek 81:327–341

    Article  PubMed  Google Scholar 

  • Weitere M, Bergfeld T, Rice SA, Matz G, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601. doi:10.1111/j.1462-2920.2005.00851.x

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854. doi:10.1128/AEM.67.12.5849-5854.2001

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DM (2008) Testate amoebae and nutrient cycling: peering into the black box of soil ecology. Trends Ecol Evol 23:596–599. doi:10.1016/j.tree.2008.07.006

    Article  PubMed  Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Plant Biol 6:327–333. doi:10.1016/S1369-5266(03)00059-1

    Article  PubMed  CAS  Google Scholar 

  • Wood J, Tordoff GM, Jones TH, Boddy L (2006) Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycol Res 110:985–993. doi:10.1016/j.mycres.2006.05.013

    Article  PubMed  Google Scholar 

  • Wurst S, Jones H (2003) Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia (Jena) 47:91–97. doi:10.1078/0031-4056-00173

    Article  Google Scholar 

  • Wurst S, Langel R, Reineking A, Bonkowski M, Scheu S (2003) Effects of earthworms and organic litter distribution on plant performance and aphid reproduction. Oecologia 137:90–96

    Article  PubMed  Google Scholar 

  • Wurst S, Dugassa-Gobena D, Langel R, Bonkowski M, Scheu S (2004) Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol 163:169–176

    Article  Google Scholar 

  • Wyss U (2002) Feeding behaviour of plant parasitic nematodes. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 462–513

    Google Scholar 

  • Yeates GW, Saggar S, Denton CS, Mercer CF (1998) Impact of clover cyst nematode (Heterodera trifolii) infection on soil microbial activity in the rhizosphere of white clover (Trifolium repens)—A pulse-labelling experiment. Nematologica 44:81–90

    Google Scholar 

  • Yeates G, Bardgett R, Mercer C, Saggar S, Feltham C (1999a) Increase in 14C-carbon translocation to the soil microbial biomass when five species of pant parasitic nematodes infect roots of white clover. Nematology 1:295–300. doi:10.1163/156854199508298

    Article  Google Scholar 

  • Yeates GW, Saggar S, Hedley CB, Mercer CF (1999b) Increase in 14C-carbon translocation to the soil microbial biomass when five species of plant-parasitic nematodes infect roots of white clover. Nematology 1:295–300. doi:10.1163/156854199508298

    Article  Google Scholar 

  • Young IM, Griffiths BG, Robertson WM (1996) Continuous foraging by bacterial-feeding nematodes. Nematologica 42:378–382

    Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703. doi:10.1128/MMBR.00001-06

    Article  PubMed  Google Scholar 

  • Zandonadi D, Canellas L, Façanha A (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H + pumps activation. Planta 225:1583–1595. doi:10.1007/s00425-006-0454-2

    Article  PubMed  CAS  Google Scholar 

  • Zwart KB, Kuikman PJ, Van Veen JA (1994) Rhizosphere protozoa: Their significance in nutrient dynamics. In: Darbyshire J (ed) Soil protozoa. CAB International, Wallingford, pp 93–121

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Prof. Dr. Donald Phillips and Dr. Tama Fox, Plant Sciences Department, University of California, Davis, USA, for their collaborative support for MB and for providing the data on DAPG production by pseudomonads for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bonkowski.

Additional information

Responsible Editor: Phillipe Lemanceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233 (2009). https://doi.org/10.1007/s11104-009-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0013-2

Keywords

Navigation