Plant and Soil

, Volume 320, Issue 1–2, pp 37–77 | Cite as

Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis

Marschner Review

Abstract

A comprehensive appraisal of the mycorrhizal literature provides data for 336 plant families representing 99% of flowering plants, with regard to mycorrhizas and other nutritional adaptations. In total, arbuscular (AM), orchid, ectomycorrhizas (EM) and ericoid mycorrhizas and nonmycorrhizal (NM) roots occur in 74%, 9%, 2%, 1% and 6% of Angiosperm species respectively. Many families of NM plants have alternative nutritional strategies such as parasitism, carnivory, or cluster roots. The remaining angiosperms (8%) belong to families reported to have both AM and NM species. These are designated as NM-AM families here and tend to occur in habitats considered non-conducive to mycorrhizal fungi, such as epiphytic, aquatic, extremely cold, dry, disturbed, or saline habitats. Estimated numbers of species in each category of mycorrhizas is presented with lists of NM and EM families. Evolutionary trends are also summarised by providing data on all clades and orders of flowering and non-flowering vascular plants on a global scale. A case study of Western Australian plants revealed that plants with specialised nutritional modes such as carnivory, cluster roots, or EM were much more diverse in this ancient landscape with infertile soils than elsewhere. Detailed information on the mycorrhizal diversity of plants presented here is linked to a website (mycorrhizas.info) to allow data to remain current. Over a century of research effort has resulted in data on mycorrhizal associations of >10,000 plant species that are of great value, but also somewhat of a liability due to conflicting information about some families and genera. It is likely that these conflicts result in part from misdiagnosis of mycorrhizal associations resulting from a lack of standardisation in criteria used to define them. Families that contain both NM and AM species provide a second major source of inconsistency, but even when these are excluded there is a ∼10% apparent error rate in published lists of mycorrhizal plants. Arbuscules are linked to AM misdiagnosis since they are used less often than vesicles to recognise AM associations in roots and apparently occur sporadically in NM plants. Key issues with the diagnosis of mycorrhizal plants are discussed using the Cyperaceae as a case study. Detailed protocols designed to consistently distinguish AM from endophytic Glomeromycotan Fungus Colonisation (GFC) are provided. This review aims to stimulate debate and provide advice to researchers delving into root biology.

Keywords

Arbuscular mycorrhiza Ectomycorrhiza Roots Plant diversity and evolution Glomeromycotan fungus colonisation Symbiotic diagnosis 

Abbreviations

AM

arbuscular mycorrhizas (vesicular-arbuscular mycorrhizas VAM)

NM

nonmycorrhizal plants

EM

ectomycorrhizas (ECM)

NM-AM

plants with variable AM or NM roots

GFC

endophytic or unspecified colonisation by Glomeromycotan Fungi

RLC

root length colonised

References

  1. Abbott LK, Robson AD (1984) The effect of VA mycorrhizae on plant growth. In: Conway LP, Bagyaraj DJ (eds) VA Mycorrhiza. CRC, Boca Raton, pp 113–130Google Scholar
  2. Alarcón C, Cuenca G (2005) Arbuscular mycorrhizas in coastal sand dunes of the Paraguaná Peninsula, Venezuela. Mycorrhiza 16:1–9PubMedGoogle Scholar
  3. Alexander IJ (1989) Systematics and ecology of ectomycorrhizal legumes. In: Stirton CH, Zarucchi JL (eds) Advances in Legume Biology. Missouri Botanical Garden, Missouri, pp 607–624Google Scholar
  4. Allen EB, Chambers JC, Connor KF, Allen MF, Brown RW (1987) Natural re-establishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alpine Res 19:11–20Google Scholar
  5. Allen EB, Rincon E, Allen MF, Perezjimenez A, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261–274Google Scholar
  6. Allen MF (1988) Re-establishment of VA mycorrhizas following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. Proc Roy Soc Edinburgh 94B:63–71Google Scholar
  7. Allen MF, Egerton-Warburton LM, Allen EB, Karen O (1999) Mycorrhizae in Adenostoma fasciculatum Hook. & Arn.: a combination of unusual ecto- endo-forms. Mycorrhiza 8:225–228, doi:10.1007/s005720050238 Google Scholar
  8. Allen N, Nordlander M, McGonigle T, Basinger J, Kaminsjy S (2006) Arbuscular mycorrhizae on Axel Heiberg Island (80°N) and at Saskatoon (52°N) Canada. Can J Bot 84:1094–1100Google Scholar
  9. Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272Google Scholar
  10. Allsop N, Stock WD (1993) Mycorrhizal status of plants growing in the Cape Floristic Region, South Africa. Bothalia 23:91–104Google Scholar
  11. Andrade ACS, Queiroz MH, Hermes RA, Oliveira VL (2000) Mycorrhizal status of some plants of the Araucaria forest and the Atlantic rainforest in Santa Catarina, Brazil. Mycorrhiza 10:131–136Google Scholar
  12. Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex mummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256, doi:10.1007/s11104-004-7942-6 Google Scholar
  13. Bagyaraj DJ, Manjunath A, Patil RB (1979) Occurrence of vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Trans Br Mycoll Soc 72:164–167Google Scholar
  14. Bakarr MI, Janos DP (1996) Mycorrhizal associations of tropical legume trees in Sierra Leone, West Africa. For Ecol Manage 89:89–92Google Scholar
  15. Barnola LG, Montilla MG (1997) Vertical distribution of mycorrhizal colonization, root hairs, and belowground biomass in three contrasting sites from the tropical high mountains, Mérida, Venezuela. Arctic Alpine Res 29:206–212Google Scholar
  16. Bauer CR, Kellogg CH, Bridgham SD, Lamberi GA (2003) Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands 23:961–968, doi:10.1672/0277-5212(2003)023[0961:MCAHGI]2.0.CO;2 Google Scholar
  17. Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, New York, pp 373–389Google Scholar
  18. Beck-Nielsen D, Madsen TV (2001) Occurrence of vesicular-arbuscular mycorrhiza in aquatic macrophytes from lakes and rivers. Aquat Bot 71:141–148, doi:10.1016/S0304-3770(01)00180-2 Google Scholar
  19. Bellgard SE (1991) Mycorrhizal associations of plant species in Hawksbury sandstone vegetation. Aust J Bot 39:357–364, doi:10.1071/BT9910357 Google Scholar
  20. Berliner R, Torrey JG (1989) Studies on mycorrhizal associations in Harvard Forest, Massachusetts. Can J Bot 67:2245–2251Google Scholar
  21. Berch SM, Kendrick B (1982) Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74:769–776Google Scholar
  22. Berch SM, Gamiet S, Deom E (1988) Mycorrhizal status of some plants in south-western British Columbia. Can J Bot 66:1924–1928Google Scholar
  23. Béreau M, Gazel M, Garbaye J (1997) Les symbioses mycorhiziennes des arbres de la forêt tropicale humide de Guyane francaise. Can J Bot 75:711–716Google Scholar
  24. Berliner R, Torrey JG (1989) Studies on mycorrhizal associations in Harvard Forest, Massachusetts. Can J Bot 67:2245–2251Google Scholar
  25. Bethlenfalvay GJ, Dakessian S, Pacovsky RS (1984) Mycorrhizae in a southern California desert: ecological implications. Can J Bot 62:519–524, doi:10.1139/b84-077 Google Scholar
  26. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352, doi:10.1111/j.1469-8137.2005.01429.x PubMedGoogle Scholar
  27. Blaschke H (1991) Multiple mycorrhizal associations of individual calcicole host plants in the alpine grass-heath zone. Mycorrhiza 1:31–34Google Scholar
  28. Blaszkowski J (1994) Arbuscular fungi and mycorrhizae (Glomales) of the Hel Peninsula, Poland. Mycorrhiza 5:71–88, doi:10.1007/BF00204022 Google Scholar
  29. Bledsoe C, Klein P, Bliss LC (1990) A survey of mycorrhizal plants on Truelove Lowland, Devon Island, N.W.T., Canada. Can J Bot 68:1848–1856Google Scholar
  30. Brockhoff JO, Allaway WG (1989) Vesicular-arbuscular mycorrhizal fungi in natural vegetation and sand-mined dunes at Bridge Hill, New South Wales. Wetlands 8:47–54Google Scholar
  31. Boulet FM, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367, doi:10.1007/s11104-004-0908-x Google Scholar
  32. Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313, doi:10.1016/S0065-2504(08)60099-9 Google Scholar
  33. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304, doi:10.1046/j.1469-8137.2002.00397.x Google Scholar
  34. Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev Camb Philos Soc 79:473–495, doi:10.1017/S1464793103006316 PubMedGoogle Scholar
  35. Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 281–298Google Scholar
  36. Brundrett MC, Abbott LK (1991) Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot 39:445–457, doi:10.1071/BT9910445 Google Scholar
  37. Brundrett MC, Kendrick WB (1988) The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173, doi:10.1139/b88-166 Google Scholar
  38. Brundrett MC, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551–578, doi:0.1139/b90-076 Google Scholar
  39. Brundrett M, Abbott L, Jasper D, Malajczuk N, Bougher N, Brennan K, Ashwath N (1995) Mycorrhizal Associations in the Alligator Rivers Region. Part II Results of Experiments. Final Report. Office of the Supervising Scientist, Jabiru, NT, AustraliaGoogle Scholar
  40. Brundrett MC, Ashwath N, Jasper DA (1996a) Mycorrhizas in the Kakadu region of tropical Australia. II. Propagules of mycorrhizal fungi in disturbed habitats. Plant Soil 184:173–184, doi:10.1007/BF00029286 Google Scholar
  41. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996b) Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph 32. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  42. Burgess T, Dell B, Malajczuk N (1994) Variations in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739, doi:10.1111/j.1469-8137.1994.tb02977.x Google Scholar
  43. Camargo-Ricalde SL, Dhillion SS, Jimenéz-Gonzáles C (2003) Mycorrhizal perennials of the “matorral xerófilo” and the “selva bja caducifolia” communities in the semiarid Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13:77–83PubMedGoogle Scholar
  44. Cameron KM, Wurdack KJ, Jobson RW (2002) Molecular evidence for the common origin of snap-traps among carnivorous plants. Am J Bot 89:1503–1509, doi:10.3732/ajb.89.9.1503 Google Scholar
  45. Carrillo-Garcia Á, León de la Luz J-L, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–335, doi:10.1046/j.1526-100X.1999.72027.x Google Scholar
  46. Cázares E, Trappe JM, Jumponnen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416, doi:10.1007/s00572-004-0342-1 PubMedGoogle Scholar
  47. Chapman AD (2005) Numbers of Living Species in Australia and the World. Australian Biodiversity Information Services, Toowoomba, Australia. A Report for the Department of the Environment and Heritage, September 2005. (www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/03-03-groups-plants.html)
  48. Chase MW, Cameron KM, Barrett RL, Freudenstein JV (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, pp 69–89Google Scholar
  49. Chaudhry MS, Batool Z, Khan AG (2005) Preliminary assessment of plant community structure and arbuscular mycorrhizas in rangeland habitats of Cholistan desert, Pakistan. Mycorrhiza 15:606–611PubMedGoogle Scholar
  50. Clayton JS, Bagyaraj DJ (1984) Vesicular-arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquat Bot 19:251–262, doi:10.1016/0304-3770(84)90043-3 Google Scholar
  51. Collier SC, Yarnes CT, Herman RP (2003) Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. J Arid Environ 55:223–229Google Scholar
  52. Cooke JC, Lefor MW (1988) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222, doi:10.1111/j.1526-100X.1998.00628.x Google Scholar
  53. Cooper KM (1976) A field survey of mycorrhizas in New Zealand ferns. NZ J Bot 14:169–181Google Scholar
  54. Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal responses to phosphorus fertilization. Am J Bot 88:1824–1829, doi:10.2307/3558359 Google Scholar
  55. Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, U.S.A., in reference to large-scale patterns in arctic-alpine habitats. Arct Antarct Alp Res 37:177–188, doi:10.1657/1523-0430(2005)037[0177:DOMTAA]2.0.CO;2 Google Scholar
  56. Currah RS, Van Dyk M (1986) A survey of some perennial vascular plant species native to Alberta for occurrence of mycorrhizal fungi. Can Field Nat 100:330–342Google Scholar
  57. Dahlstrom JL, Smith JE, Weber NS (2000) Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 9:279–285, doi:10.1007/PL00009992 Google Scholar
  58. Davies J, Briarty LG, Rieley JO (1973) Observations on the swollen lateral roots of the Cyperaceae. New Phytol 72:167–174, doi:10.1111/j.1469-8137.1973.tb02022.x Google Scholar
  59. da Silva, dos Santos BA, Alves MV, Maia LC (2001) Arbuscular mycorrhiza in species of Commelinidae (Liliopsida) in the state of Pernambuco (Brazil). Acta Bot Brasilia 15:155–165Google Scholar
  60. DeMars BG (1996) Vesicular-arbuscular mycorrhizal status of spring ephemerals in Two Ohio forests. Ohio J Sci 96:97–99Google Scholar
  61. DeMars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189Google Scholar
  62. Der JP, Nickrent D (2008) A Molecular Phylogeny of Santalaceae (Santalales). Syst Bot 33:107–116, doi:10.1600/036364408783887438 Google Scholar
  63. de Alwis DP, Abeynayake K (1980) A survey of mycorrhizae in some forest trees of Sri Lanka. In: Mikola P (ed) Tropical Mycorrhiza Research. Clarendon Press, Oxford, pp 146–153Google Scholar
  64. Dhillion SS, Vidiella PE, Vidiella PE, Aquilera LE, Friese CF, De Leon E, Armesto JJ, Zak JC (1995) Mycorrhizal plants and fungi in the fog-free Pacific coastal desert of Chile. Mycorrhiza 5:381–386Google Scholar
  65. Dickie IA, Thomas MM, Bellingham PJ (2007) On the perils of mycorrhizal status lists: the case of Buddleja davidii. Mycorrhiza 17:687–688, doi:10.1007/s00572-007-0146-1 PubMedGoogle Scholar
  66. Dodd JC, Dougall TA, Clapp JP, Jeffries P (2002) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK – the reclamation platform created during the building of the Channel tunnel between France and the UK. Biodivers Cons 11:39–58Google Scholar
  67. Ducousso M, Bourgeois C, Buyck B, Eyssartier G, Vincelette M, Rabevohitra R, Béna G, Randrihasipara L, Dreyfus B, Prin Y (2004) The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India-Madagascar separation, about 88 million years ago. Mol Ecol 13:231–236, doi:10.1046/j.1365-294X.2003.02032.x PubMedGoogle Scholar
  68. Ducousso M, Ramanankierana H, Duponnois R, Rabévohitra R, Randrihasipara L, Vincelette M, Dreyfus B, Prin B (2008) Mycorrhizal status of native trees and shrubs from eastern Madagascar littoral forests with special emphasis on one new ectomycorrhizal endemic family, the Asteropeiaceae. New Phytol 178:233–238, doi:10.1111/j.1469-8137.2008.02389.x PubMedGoogle Scholar
  69. Eriksen M, Bjureke KE, Dhillion SS (2002) Mycorrhizal plants of traditionally managed boreal grasslands in Norway. Mycorrhiza 12:117–123PubMedGoogle Scholar
  70. Ernst WHO, Van Duin WE, Oolbekking GT (1984) Vesicular-arbuscular mycorrhiza in dune vegetation. Acta Bot Neerl 33:151–160Google Scholar
  71. Farmer AM (1985) The occurrence of vesicular-arbuscular mycorrhiza in isoetoid-type submerged aquatic macrophytes under naturally varying conditions. Aquat Bot 21:245–249Google Scholar
  72. Fisher JB, Jayachandran K (2005) Presence of arbuscular mycorrhizal fungi in South Florida native plants. Mycorrhiza 15:580–588PubMedGoogle Scholar
  73. Florabase (2007) Census of Plants of Western Australia. Western Australian Herbarium (url: florabase.dec.wa.gov.au/statistics)
  74. Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33Google Scholar
  75. Fontenla S, Puntieri J, Ocampo JA (2001) Mycorrhizal associations in the Patagonian steppe, Argentina. Plant Soil 223:13–29Google Scholar
  76. Frenot Y, Bergstrom DM, Gloaguen JC, Tavenard R, Strullu DG (2005) The first record of mycorrhizae on sub-Antarctic Heard Island: a preliminary examination. Antarctic Sci 17:205–210Google Scholar
  77. Frioni L, Minasian H, Volfovicz (1999) Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. For Ecol Manag 115:41–47Google Scholar
  78. Fuchs B, Haselwandter K (2004) Red list plants: colonisation by arbuscular mycorrhizal fungi and dark septate endophtes. Mycorrhiza 14:277–281, doi:10.1007/s00572-004-0314-5 PubMedGoogle Scholar
  79. Gai JP, Cai XB, Feng G, Christie P, Li XL (2006) Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza 16:151–157, doi:10.1007/s00572-005-0031-8 PubMedGoogle Scholar
  80. Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157, doi:10.1111/j.1469-8137.1996.tb04350.x Google Scholar
  81. Gehring CA, Connell JH (2006) Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza 16:89–98, doi:10.1007/s00572-005-0018-5 PubMedGoogle Scholar
  82. Gemma JN, Koske RE (1990) Mycorrhiae on recent Volcanic substrates in Hawaii. Am J Bot 79:1193–1200, doi:10.2307/2444630 Google Scholar
  83. Gemma JN, Koske RE (1995) Mycorrhizae in Hawaiian epiphytes. Pac Sci 49:175–180Google Scholar
  84. Gill WM, Lapeyrie F, Gomi T, Suzuki K (1999) Tricholoma matsutake—an assessment of in situ and in vitro infection by observing cleared and stained roots. Mycorrhiza 9:227–231, doi:10.1007/s005720050271 Google Scholar
  85. Giovannetti M, Nicolson TH (1983) Vesicular-arbuscular mycorrhizas in Italian and dunes. Trans Br Mycol Soc 80:552–557Google Scholar
  86. Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130, doi:10.1007/s005720050224 Google Scholar
  87. Gorsi MS (2002) Studies on mycorrhizal association in some medicinal plants of Azad Jammu and Kashmir. Asian J Plant Sci 1:383–387Google Scholar
  88. Grippa CR, Hoeltgebaum MP, Stürmer SL (2007) Occurrence of arbuscular mycorrhizal fungi in bromeliad species from the tropical Atlantic forest biome in Brazil. Mycorrhiza 17:235–240, doi:10.1007/s00572-006-0090-5 PubMedGoogle Scholar
  89. Hadley G, Williamson B (1972) Features of mycorrhizal infection in some Malayan orchids. New Phytol 71:1111–1118, doi:10.1111/j.1469-8137.1972.tb01989.x Google Scholar
  90. Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105(Supplement 2):1–102, doi:10.1111/j.1469-8137.1987.tb00674.x Google Scholar
  91. Harrington TJ, Mitchell DT (2002) Colonization of root systems of Carex flacca and C. pilulifera by Cortinarius (Dermocybe) cinnamomeus. Mycol Res 106:452–459, doi:10.1017/S0953756202005713 Google Scholar
  92. Hartnett DC, Potgieter AF, Wilson GWT (2004) Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afric J Ecol 42:328–337Google Scholar
  93. Haug I, Lempe J, Homeier J, Weiss M, Setaro S, Oberwinkler F, Kottke I (2004) Graffenrieda emarginata (Melastomataceae) forms mycorrhizas with Glomeromycota and with a member of the Hymenoscyphus ericae aggregate in the organic soil of a neotropical mountain rain forest. Can J Bot 82:340–356, doi:10.1139/b03-153 Google Scholar
  94. Hetrick BAD, Wilson GWT, Todd TC (1992) Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass prairie forbs. Can J Bot 70:1521–1528Google Scholar
  95. Heywood VH, Brummitt RK, Culham A, Selberg O (2007) Flowering plants families of the world. Royal Botanic Gardens, KewGoogle Scholar
  96. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath Bothe KH (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183, doi:10.1007/s005720000074 Google Scholar
  97. Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817, doi:10.1139/b78-336 Google Scholar
  98. Högberg P (1982) Mycorrhizal associations in some woodland and forest trees and shrubs in Tanzania. New Phytol 92:407–415Google Scholar
  99. Högberg P, Piearce GD (1986) Mycorrhizas in Zambian trees in relation to host taxonomy, vegetation type and successional patterns. J Ecol 74:775–785Google Scholar
  100. Hopkins NA (1987) Mycorrhizae in a California serpentine grassland community. Can J Bot 65:484–487Google Scholar
  101. Hopper SD, Gioia P (2004) The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Syst 35:623–650, doi:10.1146/annurev.ecolsys.35.112202.130201 Google Scholar
  102. Hurst SE, Turnbull MH (2002) The effect of plant light environment on mycorrhizal colonisation in field-grown seedlings of podocarp angiosperm tree species. N Z J Bot 40:65–72Google Scholar
  103. Imhof S (1999a) Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jacq.) Pers. (Gentianaceae). Mycorrhiza 9:33–39, doi:10.1007/s005720050260 Google Scholar
  104. Imhof S (1999b) Subterranean structures and mycorrhiza of the achlorophyllous Burmannia tenella Bentham (Burmanniaceae). Can J Bot 77:637–643, doi:10.1139/cjb-77-5-637 Google Scholar
  105. Janos DP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61:151–162, doi:10.2307/1937165 Google Scholar
  106. Janos DP (1993) Vesicular-arbuscular mycorrhizae of epiphytes. Mycorrhiza 4:1–4, doi:10.1007/BF00203242 Google Scholar
  107. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91, doi:10.1007/s00572-006-0094-1 PubMedGoogle Scholar
  108. Jasper DA (2007) Beneficial soil microorganisms in the jarrah forest and their recovery in bauxite mine restoration in southwestern Australia. Restor Ecol 15:S74–S84Google Scholar
  109. Jayachandran K, Shetty KG (2003) Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat Bot 76:281–290, doi:10.1016/S0304-3770(03)00075-5 Google Scholar
  110. Johnson-Green PC, Kenkel NC, Booth T (1995) The distribution and phenology of arbuscular mycorrhizae along an inland salinity gradient. Can J Bot 73:1318–1327Google Scholar
  111. Juniper BE, Robins RJ, Joel DM (1989) The Carnivorous Plants. Academic, LondonGoogle Scholar
  112. Kagawa A, Fujiyoshi M, Tomita M, Masuzawa T (2006) Mycorrhizal status of alpine plant communities on Mt. Maedake Cirque in the Japan South Alps. Polar Biosci 20:92–102Google Scholar
  113. Kai W, Zhiwei Z (2006) Occurence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Int Rev Hydrobiol 91:29–37, doi:10.1002/iroh.200510827 Google Scholar
  114. Katenin AE (1964) Mycorrhiza of arctic plants. Problemy Severa 8:148–154 [In Russian]Google Scholar
  115. Khan AG (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of Endogone spores in adjacent soils. J Gen Microbiol 81:7–14Google Scholar
  116. Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbioses in aquatic plants. In: Verma A, Hock B (eds) Mycorrhiza: Structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 627–666Google Scholar
  117. Kohn LM, Stasovski E (1990) The mycorrhizal status of plants at Alexander fiord, Ellesemere Island, Canada, a high arctic site. Mycologia 82:23–35, doi:10.2307/3759959 Google Scholar
  118. Koide RT, Schreiner RP (1992) Regulation of vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581, doi:10.1146/annurev.pp.43.060192.003013 Google Scholar
  119. Kope HH, Warcup JH (1986) Synthesised ectomycorrhizal associations of some Australian herbs and shrubs. New Phytol 104:591–599, doi:10.1111/j.1469-8137.1986.tb00659.x Google Scholar
  120. Koske RE, Gemma JN (1990) VA mycorrhizae in strand vegetation of Hawaii: evidence for long-distance codispersal of plants and fungi. Am J Bot 77:466–474Google Scholar
  121. Koske RE, Gemma JN, Flynn T (1992) Mycorrhizae in Hawaiian angiosperms: a survey with implications for the origin of the native flora. Am J Bot 79:853–862, doi:10.2307/2444994 Google Scholar
  122. Kottke I, Beck A, Oberwinkler F, Homeier J, Neill D (2004) Arbuscular endomycorrhizae are dominant in the organic soil of a neotropical montane cloud forest. J Trop Ecol 20:125–129Google Scholar
  123. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, BerkeleyGoogle Scholar
  124. Kumar T, Ghose M (2008) Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical properties of soil. Wetland Ecol Manage 16:471–483Google Scholar
  125. Kühn KD, Weber HC, Dehne HW, Gworgwor NA (1991) Distribution of vesicular-arbuscular mycorrhizal fungi on a fallow agriculture site I. Dry habitat. Agnew Botanik 65:169–185Google Scholar
  126. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas J (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot (Lond) 98:693–713, doi:10.1093/aob/mcl114 Google Scholar
  127. Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot Rev 48:597–689, doi:10.1007/BF02860714 Google Scholar
  128. Laursen GA, Treu R, Seppelt RD, Stephenson SL (1997) Mycorrhizal assessment of vascular plants from subantarctic Macquarie Island. Arct Alp Res 29:483–491, doi:10.2307/1551996 Google Scholar
  129. Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216, doi:10.1111/j.1469-8137.1994.tb04272.x Google Scholar
  130. Lesica P, Antibus RK (1986) Mycorrhizal status of hemiparasitic vascular plants in Montana U. S. A. Trans Br Mycol Soc 86:341–343Google Scholar
  131. Lesica P, Antibus RK (1990) The occurrence of mycorrhizae in vascular epiphytes of two Costa Rican rain forests. Biotropica 22:250–258, doi:10.2307/2388535 Google Scholar
  132. Li A-R, Guan K-Y (2007) Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza 17:103–109, doi:10.1007/s00572-006-0081-6 PubMedGoogle Scholar
  133. Ligrone R, Carafa A, Lumni E, Bianciotti V, Bonfante P, Duckett J (2007) Glomeromycotan associations in liverworts: a molecular, cellular and taxonomic analysis. Am J Bot 94:1756–1777, doi:10.3732/ajb.94.11.1756 Google Scholar
  134. Logan VS, Clarke PJ, Allaway WG (1989) Mycorrhizas and root attributes of plants of coastal sand-dunes of New South Wales. Aust J Plant Physiol 16:141–146Google Scholar
  135. Louis I (1990) A mycorrhizal survey of plant species colonizing coastal reclaimed land in Singapore. Mycologia 82:772–778Google Scholar
  136. Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–118Google Scholar
  137. Maeda M (1954) The meaning of mycorrhiza in regard to systematic botany. Kumamoto J Sci B 3:57–84Google Scholar
  138. Maffia B, Nadkarni NM, Janos DP (1993) Vesicular-arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza 4:5–9Google Scholar
  139. Malloch D, Malloch B (1981) The mycorrhizal status of boreal plants: species from northeastern Ontario. Can J Bot 59:2167–2172Google Scholar
  140. Malloch D, Malloch B (1982) The mycorrhizal status of boreal plants: additional species from northeastern Ontario. Can J Bot 60:1035–1040CrossRefGoogle Scholar
  141. Maremmani A, Bedini S, Matoševic I, Tomai PE, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13:33–40PubMedGoogle Scholar
  142. Massicotte HB, Melville LH, Peterson RL (2005) Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot 83:1057–1064, doi:10.1139/b05-046 Google Scholar
  143. McGee P (1986) Mycorrhizal associations of plant species in a semiarid community. Aust J Bot 34:585–593, doi:10.1071/BT9860585 Google Scholar
  144. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501, doi:10.1111/j.1469-8137.1990.tb00476.x Google Scholar
  145. McGuire KL, Henkel TW, Granzow de la Cerda I, Villa G, Edmund F, Andrew C (2008) Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species. Mycorrhiza 18:217–222PubMedGoogle Scholar
  146. Medve RJ (1984) The mycorrhizae of pioneer species in disturbed ecosystems in Western Pennsylvania. Am J Bot 71:787–794Google Scholar
  147. Meney KA, Dixon KW, Scheltema M, Pate JS (1993) Occurrence of vesicular mycorrhizal fungi in dryland species of Restionaceae and Cyperaceae from south-west Western Australia. Aust J Bot 41:733–737, doi:10.1071/BT9930733 Google Scholar
  148. Menoyo E, Becarra AG, Renison D (2007) Mycorrhizal associations in Polylepis woodlands of Central Argentina. Can J Bot 85:526–631Google Scholar
  149. Michelsen A (1993) The mycorrhizal status of vascular epiphytes in Bale Mountains National Park, Ethiopia. Mycorrhiza 4:11–15, doi:10.1007/BF00203244 Google Scholar
  150. Midgley JJ, Stock WD (1998) Natural abundance of ∂15N confirms insectivorous habit of Roridula gorgonias, despite it having no proteolytic enzymes. Ann Bot (Lond) 8:387–388Google Scholar
  151. Miller OK Jr (1982) Mycorrhizae, mycorrhizal fungi, and fungal biomass in subalpine tundra at Eagle Summit, Alaska. Holarctic Ecol 5:125–134Google Scholar
  152. Miller RM (1979) Some occurrences of vesicular-arbuscular mycorrhiza in natural and disturbed ecosystems of the Red Desert. Can J Bot 57:619–623, doi:10.1139/b79-079 Google Scholar
  153. Miller RM, Smith CR, Jastrow JD, Bever JD (1999) Mycorrhizal status of the genus Carex (Cyperaceae). Am J Bot 86:547–553, doi:10.2307/2656816 PubMedGoogle Scholar
  154. Mishra RR, Sharma GD, Gatphoh AR (1980) Mycorrhizas in the ferns of north eastern India. Proc Ind Nat Sci Acad B 46:546–551Google Scholar
  155. Mohankumar V, Mahadevan A (1986) Survey of vesicular-arbuscular mycorrhizae in mangrove vegetation. Curr Sci 55:936Google Scholar
  156. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MJ (ed) mycorrhizal functioning an integrative plant-fungal process. Chapman & Hall, New York, pp 357–423Google Scholar
  157. Moyersoen B, Becker P, Alexander IJ (2001) Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? New Phytol 150:591–599Google Scholar
  158. Muthukumar T, Sha LQ, Yang XD, Cao M, Tang JW, Zheng Z (2003) Distribution of roots and arbuscular mycorrhizal associations in tropical forest types of Xishuangbanna, southwest China. Appl Soil Ecol 22:241–253Google Scholar
  159. Muthukumar T, Senthilkumar M, Rajangam M, Udian K (2006) Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11–24PubMedGoogle Scholar
  160. Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313, doi:10.1007/s005720050274 Google Scholar
  161. Muthukumar T, Udaiyan K (2002) Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semi-arid tropical grassland. Acta Oecol 23:337–247, doi:10.1016/S1146-609X(02)01165-7 Google Scholar
  162. Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges—an overview. Mycorrhiza 14:65–77, doi:10.1007/s00572-004-0296-3 PubMedGoogle Scholar
  163. Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858, doi:10.1038/35002501 PubMedGoogle Scholar
  164. Nadarajah P, Nawawi A (1993) Mycorrhizal status of epiphytes in Malaysian oil palm plantations. Mycorrhiza 4:21–25, doi:10.1007/BF00203246 Google Scholar
  165. Newbery DM, Alexander IJ, Thomas DW, Gartlan JS (1988) Ectomycorrhizal rainforest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytol 109:433–450Google Scholar
  166. Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751, doi:10.1111/j.1469-8137.1987.tb00175.x Google Scholar
  167. Nickrent DL (1997)- onward. The parasitic plant connection. http:// www.parasiticplants.siu.edu/
  168. Nielsen SL, Thingstrup I, Wigand C (1999) Apparent lack of vesicular–arbuscular mycorrhiza (VAM) in the seagrasses Zostera marina L. and Thalassia testudinum Banks ex König. Aquat Bot 63:261–266, doi:10.1016/S0304-3770(98)00123-5 Google Scholar
  169. O’Connor PJ, Smith SE, Smith FA (2001) Arbuscular mycorrhizal associations in the southern Simpson Desert. Aust J Bot 49:493–499Google Scholar
  170. Olsson PA, Eriksen B, Dahlberg A (2004) Colonisation by arbuscular mycorrhizal and fine endophytic fungi in herbaceous vegetation in Arctic Canada. Can J Bot 82:1547–1556Google Scholar
  171. Onguene NA, Kuyper TW (2001) Mycorrhizal associations in the rain forest of South Cameroon. For Ecol Manage 140:277–287Google Scholar
  172. Onipchenko VG, Zobel M (2000) Mycorrhia, vegetative mobility and responses to disturbance of alpine plants in the northwestern Caucasus. Folia Geobotanica 35:1–11Google Scholar
  173. Orlowska E, Zubek Sz, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration of arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160, doi:10.1007/s00572-001-0155-4 PubMedGoogle Scholar
  174. Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858, doi:10.3732/ajb.89.11.1852 Google Scholar
  175. Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854, doi:10.1111/j.1469-8137.1993.tb03933.x Google Scholar
  176. Pendleton RL, Smith BN (1983) Vesicular-arbuscular mycorrhizae of weedy and colonizer plant species at disturbed sites in Utah. Oecologia 59:296–301, doi:10.1007/BF00378852 Google Scholar
  177. Perrier N, Amier, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458, doi:10.1007/s00572-006-0057-6 PubMedGoogle Scholar
  178. Peterson RL, Ashford AE, Allaway WG (1985) Vesicular-arbuscular mycorrhizal associations of vascular plants on Heron Island, a Great Barrier Reef coral cay. Aust J Bot 33:69–76Google Scholar
  179. Peterson RL, Howarth MJ, Whittier DP (1981) Interactions between a fungal endophyte and gametophyte cells in Psilotum nudum. Can J Bot 59:711–720, doi:10.1139/b81-101 Google Scholar
  180. Peterson RL, Massicotte HB, Melville LH F Phillips F (2004) Mycorrhizas: Anatomy and Cell Biology. NRC Research, CanadaGoogle Scholar
  181. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164, doi:10.1016/0303-2647(75)90023-4 PubMedGoogle Scholar
  182. Powell CL (1975) Rushes and sedges are non-mycotrophic. Plant Soil 42:481–484, doi:10.1007/BF00010023 Google Scholar
  183. Powlowska TE, Blaszkowski J, Rühling Å (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505Google Scholar
  184. Radhika KP, Rodrigues BF (2007) Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquat Bot 86:291–294, doi:10.1016/j.aquabot.2006.10.009 Google Scholar
  185. Ragupathy S, Mahadevan A (1993) Distribution of vesicular-arbuscular mycorrhizae in the plants and rhizosphere soils of the tropical plains, Tamil Nadu, India. Mycorrhiza 3:123–136, doi:10.1007/BF00208920 Google Scholar
  186. Ragupathy S, Mohankumar V, Mahadevan A (1990) Occurrence of vesicular arbuscular mycorrhizae in tropical hydrophytes. Aquat Bot 36:287–291Google Scholar
  187. Rains KC, Nadkarni NM, Bledsoe CS (2003) Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257–264, doi:10.1007/s00572-003-0224-y PubMedGoogle Scholar
  188. Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352, doi:10.1111/j.1469-8137.1981.tb01729.x Google Scholar
  189. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–831, doi:10.1098/rstb.2000.0617 PubMedGoogle Scholar
  190. Reddell P, Milnes AR (1992) Mycorrhizas and other specialised nutrient-acquisition strategies: their occurrence in woodland plants from Kakadu and their role in rehabilitation of waste rock dumps at a local uranium mine. Aust J Bot 40:223–242Google Scholar
  191. Reddell P, Hopkins MS, Graham AW (1996) Functional association between apogeotropic aerial roots, mycorrhizas and paper-barked stems in a lowland tropical rainforest in North Queensland. J Trop Ecol 12:763–777Google Scholar
  192. Reeves FB, Wagner D, Moorman T, Keil J (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west I. A comparison of incidence of mycorrhizae in severely disturbed vs. natural environments. Am J Bot 66:6–13Google Scholar
  193. Rosales J, Cuenca G, Ramirez N, De Andrade Z (1997) Native colonizing species and degraded land restoration in La Gran Sabrana, Venezuela. Restor Ecol 5:147–155Google Scholar
  194. Rose SL (1981) Vesicular-arbuscular endomycorrhizal associations of some desert plants of Baja California. Can J Bot 59:1056–1060, doi:10.1139/b81-144 Google Scholar
  195. Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycress (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626, doi:10.1078/0176-1617-00988 PubMedGoogle Scholar
  196. Rowe AR, Pringle A (2005) Morphological and molecular evidence of arbuscular mycorrhizal fungi associations in Costa Rican epiphytic bromeliads. Biotropica 37:245–250, doi:10.1111/j.1744-7429.2005.00033.x Google Scholar
  197. Ruotsalainen AL, Aikio S (2004) Mycorrhizal inoculum and performance of nonmycorrhizal Carex bigelowii and mycorrhizal Trientalis europea. Can J Bot 82:443–449, doi:10.1139/b04-011 Google Scholar
  198. Ruotsalainen AL, Väre H, Vestberg M (2002) Seasonality of root fungal colonisation in low-alpine herbs. Mycorrhiza 12:29–36, doi:10.1007/s00572-001-0145-6 PubMedGoogle Scholar
  199. Saif SR (1975) The occurrence of mycorrhizas and Endogone spores in the rhizospheres of plants growing around university campus Islamabad. Pak J Bot 7:175–182Google Scholar
  200. Santos BA, Silva GA, Maia LC, Alves MV (2000) Mycorrhizas in Monocotyledonae of northeast Brazil: subclasses Alismatidae, Arecidae and Zingiberidae. Mycorrhiza 10:151–153, doi:10.1007/s005720000068 Google Scholar
  201. Schweiger PF, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254, doi:10.1111/j.1469-8137.1995.tb05726.x Google Scholar
  202. Schmidt SK, Reeves FB (1984) Effect of the non-mycorrhizal pioneer plant Salsola kali L. (Chenopodiaceae) on vesicular-arbuscular mycorrhizal (VAM) fungi. Am J Bot 71:1035–1039, doi:10.2307/2443378 Google Scholar
  203. Schmidt SK, Scow KM (1986) Mycorrhizal fungi on the Galapagos Islands. Biotropica 18:236–240Google Scholar
  204. Schreiner R, Koide RT (1993) Antifungal compounds from roots of mycotrophic and nonmycotrophic plant species. New Phytol 123:99–105Google Scholar
  205. Schulze W, Schulze ED, Pate JS, Gillison AN (1997) The nitrogen supply from soil and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. Oecologia 112:464–471, doi:10.1007/s004420050333 Google Scholar
  206. Selivanov & Eleusenova (1974) [Characteristics of mycosymbiotic relations in the plant communities of north Kazakhstan deserts.] (In Russian). Botanicheskii Zhyrnal 59, 18–35Google Scholar
  207. Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174PubMedGoogle Scholar
  208. Setaro S, Weiss M, Oberwinkler F et al (2006) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365, doi:10.1111/j.1469-8137.2005.01583.x PubMedGoogle Scholar
  209. Sharma SK, Sharma GD, Mishra RR (1986) Status of mycorrhizae in sub-tropical forest ecosystem of Meghalaya. Acta Bot Indica 14:87–92Google Scholar
  210. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialised ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–1999, doi:10.1111/j.1365-3040.2006.01574.x PubMedGoogle Scholar
  211. Shi ZY, Feng G, Christie P, Li XL (2006) Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza 16:269–275PubMedGoogle Scholar
  212. Siqueira JO, Carneiro MAC, Curi N, Rosado SCS, Davide AC (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in southeastern Brazil. For Ecol Manage 107:241–252Google Scholar
  213. Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064, doi:10.1046/j.1365-2745.1998.00326.x Google Scholar
  214. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  215. Smith JE, Johnson KA, Cázares E (1998) Vesicular mycorrhizal colonisation of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 7:279–285, doi:10.1007/s005720050193 Google Scholar
  216. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461Google Scholar
  217. Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberščik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331–336, doi:10.1016/j.aquabot.2006.07.001 Google Scholar
  218. St John TV (1980) Root size, root hairs and mycorrhizal infection: a re-examination of Baylis’s hypothesis with tropical trees. New Phytol 84:483–487, doi:10.1111/j.1469-8137.1980.tb04555.x Google Scholar
  219. Straker CJ, Weiersbye IM, Witkowski ETF (2007) Arbuscular mycorrhiza status of gold and uranium tailings and surrounding soils of South Africa’s deep level gold mines: I. Root colonization and spore levels. S Afric J Bot 73:218–225Google Scholar
  220. St John TV, Coleman DC (1983) The role of mycorrhizae in plant ecology. Can J Bot 61:1005–1014, doi:10.1139/b83-108 Google Scholar
  221. Stasz TE, Sakai WS (1984) Vesicular-arbuscular mycorrhizal fungi in the scale-leaves of Zingiberaceae. Mycologia 76:754–757, doi:10.2307/3793236 Google Scholar
  222. Tao L, Zhiwei Z (2005) Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Applied Soil Ecology 29:135–141Google Scholar
  223. Tao L, Jianping L, Zhiwei Z (2004) Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza 14:323–327PubMedGoogle Scholar
  224. Tawaraya K, Takaya Y, Turjaman M, Tuah SJ, Limin SH, Tamaid Y, Chae JY, Wagatsuma T, Osakid M (2003) Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. For Ecol Manage 182:381–386Google Scholar
  225. Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431, doi:10.1139/b87-051 Google Scholar
  226. Thomazini LI (1973) Mycorrhizas in plants of the “Cerrado”. Plant Soil 41:707–711, doi:10.1007/BF02185833 Google Scholar
  227. Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert plants. West N Am Nat 62:327–334Google Scholar
  228. Tori SD, Coley PD (1999) Tropical monodominance: a preliminary test of the ectomycorrhizal hypothesis. Biotropica 31:220–228Google Scholar
  229. Trappe JM (1962) The fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606, doi:10.1007/BF02868758 Google Scholar
  230. Trappe JM (1981) Mycorrhizae and productivity of arid and semiarid rangelands. pp 581–599 in Advances in food producing systems for arid and semi arid lands. Academic. New YorkGoogle Scholar
  231. Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 5–25Google Scholar
  232. Treu R, Laursen GA, Stephenson SL, Landolt JC, Densmore R (1996) Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza 6:21–29Google Scholar
  233. Tsuyazaki S, Hase A, Niinuma H (2005) Distribution of different mycorrhizal classes on Mount Koma, northern Japan. Mycorrhiza 15:93–100, doi:10.1007/s00572-004-0304-7 Google Scholar
  234. Turnau K, Mitka J, Kedzierska A (1992) Mycorrhizal status of herb-layer plants in a fertilized oak-pine forest. Plant Soil 143:148–152Google Scholar
  235. Väre H, Vestberg M, Eurola S (1992) Mycorrhiza and root associated fungi in Spitsbergen. Mycorrhiza 1:93–104Google Scholar
  236. Väre H, Vesterg M, Ohtonen (1997) Shifts in mycorrhiza and microbial activity along an oroarctic gradient in northern Fennoscandia. Arct Alp Res 29:93–104, doi:10.2307/1551839 Google Scholar
  237. Vesk PA, Ashford AE, Markovina AL, Allaway WG (2000) Apoplastic barriers and their significance in the exodermis and sheath of Eucalyptus pilularis-Pisolithus tinctorius ectomycorrhizas. New Phytol 145:333–346, doi:10.1046/j.1469-8137.2000.00583.x Google Scholar
  238. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363, doi:10.1007/s00572-005-0033-6 PubMedGoogle Scholar
  239. Warcup JH, McGee PA (1983) The mycorrhizal associations of some Australian Asteraceae. New Phytol 95:667–672, doi:10.1111/j.1469-8137.1983.tb03531.x Google Scholar
  240. Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354CrossRefGoogle Scholar
  241. Weishampel PA, Bedford BL (2006) Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16:495–502, doi:10.1007/s00572-006-0064-7 PubMedGoogle Scholar
  242. Wetzel PR, van der Valk AG (1996) Vesicular-arbuscular mycorrhizae in prairie pothole wetlands vegetation in Iowa and North Dakota. Can J Bot 74:883–890, doi:10.1139/b96-110 Google Scholar
  243. Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738Google Scholar
  244. Winther JL, Friedman WE (2007) Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am J Bot 94:1248–1255, doi:10.3732/ajb.94.7.1248 Google Scholar
  245. Wubet T, Kottke I, Teketay D, Oberwinkler F (2003) Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For Ecol Manage 179:387–399Google Scholar
  246. Yamato M, Iwasaki M (2002) Morphological types of arbuscular mycorrhizal fungi in roots of understorey plants in Japanese deciduous broadleaved forests. Mycorrhiza 12:291–296PubMedGoogle Scholar
  247. Yun W, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:1063–1073, doi:10.1139/b04-051 Google Scholar
  248. Zhang Y, Guo L (2007) Arbuscular mycorrhizal structures and fungi associated with mosses. Mycorrhiza 17:319–325, doi:10.1007/s00572-007-0107-8 PubMedGoogle Scholar
  249. Zhang Y, Guo LD, Liu RJ (2004) Arbuscular mycorrhizal fungi associated with common pteridophytes in Dujiangyan, southwest China. Mycorrhiza 14:25–30PubMedGoogle Scholar
  250. Zangaro W, Nisizaki SMA, Domingos JCB, Nakano EM (2002) Micorriza arbuscular em espécies arbóreas nativas da bacia do Rio Tibagi, Paraná. Cerne 8:77–87Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Plant Biology (M090), Faculty of Natural and Agricultural SciencesThe University of Western AustraliaCrawleyAustralia

Personalised recommendations