Plant and Soil

, Volume 320, Issue 1–2, pp 1–35 | Cite as

Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives

Marschner Review

Abstract

Spectroscopic approaches to plant and soil sciences have provided important information for several decades. However, many of these approaches suffered from a number of limitations and drawbacks especially in terms of spatial resolution and requirements for sample preparation. The advent of dedicated synchrotron facilities, that allow the exploitation of the particular qualities of synchrotron radiation as a research tool, has revolutionised the way we approach the investigation of nutrients and contaminants in environmental samples. Various synchrotron-based techniques are currently available that permit such investigations in situ and at the molecular level. The continuous development of these techniques is delivering substantial gains in terms of sensitivity and spatial resolution which allows analyses of diluted samples at the sub-micron scale. This paper aims at providing an introduction to synchrotron radiation and to the fundamentals of some widely used synchrotron-based techniques, in particular X-ray absorption, fluorescence and tomography. Furthermore, examples are provided regarding the applications of synchrotron-based techniques in the field of plant, soil and rhizosphere research. Finally, current limitations and future perspectives of synchrotron techniques are discussed.

Keywords

Synchrotron Plant Rhizosphere Soil 

Abbreviations

SR

synchrotron radiation

XANES

X-ray absorption near edge spectroscopy

EXAFS

extended X-ray absorption fine structure

SR-µCT

X-ray computed μ-tomography

References

  1. Adams F, Van Vaeck L, Barrett R (2005) Advanced analytical techniques: platform for nano materials science. Spectrochim Acta [A] B60:13–26Google Scholar
  2. Al-Raoush RI, Willson CS (2005) Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. J Hydrol (Amst) 300:44–64 doi:10.1016/j.jhydrol.2004.05.005 CrossRefGoogle Scholar
  3. Altman SJ, Peplinski WJ, Rivers ML (2005a) Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials. J Contam Hydrol 78:167–183 doi:10.1016/j.jconhyd.2005.05.004 PubMedCrossRefGoogle Scholar
  4. Altman SJ, Rivers ML, Reno MD, Cygan RT, McLain AA (2005b) Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography. Environ Sci Technol 39:2679–2685 doi:10.1021/es049103y PubMedCrossRefGoogle Scholar
  5. Arai Y, Lanzirotti A, Sutton S, Newville M, Dyer J, Sparks D (2006) Spatial and temporal variability of arsenic solid-state speciation in historically lead arsenate contaminated soils. Environ Sci Technol 40:673–679 doi:10.1021/es051266e PubMedCrossRefGoogle Scholar
  6. Baldwin GC (1975) Origin of synchrotron radiation. Phys Today 28(1):9–17CrossRefGoogle Scholar
  7. Beauchemin S, Hesterberg D, Beauchemin M (2002) Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids. Soil Sci Soc Am J 66:83–91Google Scholar
  8. Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE (2003) Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J Environ Qual 32:1809–1819PubMedGoogle Scholar
  9. Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101:1809–1842 doi:10.1021/cr990070s PubMedCrossRefGoogle Scholar
  10. Blakeley MP, Cianci M, Helliwell JR, Rizkallah PJ (2004) Synchrotron and neutron techniques in biological crystallography. Chem Soc Rev 33:548–557 doi:10.1039/b312779f PubMedCrossRefGoogle Scholar
  11. Blute NK, Brabander DJ, Hemond HF, Sutton SR, Newville MG, Rivers ML (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38:6074–6077 doi:10.1021/es049448g PubMedCrossRefGoogle Scholar
  12. Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G, Pohl E, Schmitt B, Schulze-Briese C, Suzuki M, Tomizaki T, Toyokawa H, Wagner A (2006) The PILATUS 1M detector. Synchrotron Rad 13:120–130 doi:10.1107/S0909049505038665 CrossRefGoogle Scholar
  13. Bulska E, Wysocka IA, Wierzbicka MH, Proost K, Janssens K, Falkenberg G (2006) In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption near-edge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. Anal Chem 78:7616–7624 doi:10.1021/ac060380s PubMedCrossRefGoogle Scholar
  14. Chao W, Harteneck BD, Liddle JA, Anderson EH, Attwood DT (2005) Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435:1210 doi:10.1038/nature03719 PubMedCrossRefGoogle Scholar
  15. Chapman HN (2008) Focus on X-ray diffraction. Science 321:352–353 doi:10.1126/science.1161183 PubMedCrossRefGoogle Scholar
  16. Cloetens P, Pateyron-Salomé M, Buffière JY, Peix G, Baruchel J, Peyrin F, Schlenker M (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81:5878–5881 doi:10.1063/1.364374 CrossRefGoogle Scholar
  17. Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75:2912–2914 doi:10.1063/1.125225 CrossRefGoogle Scholar
  18. Cloetens P, Mache R, Schlenker M, Lerbs-Mache S (2006) Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network. Proc Natl Acad Sci U S A 103:14626–14630 doi:10.1073/pnas.0603490103 PubMedCrossRefGoogle Scholar
  19. Cruz-Jimenez G, Peralta-Videa JR, de la Rosa G, Meitzner G, Parsons JG, Gardea-Torresdey JL (2005) Effect of sulfate on selenium uptake and chemical speciation in Convolvulus arvensis L. Environ Chem 2:100–107 doi:10.1071/EN05028 CrossRefGoogle Scholar
  20. Dainese E, Sabatucci A, Cozzani I (2005) Small angle X-ray scattering: a powerful tool to analyze protein conformation in solution. Curr Org Chem 9:1781–1800 doi:10.2174/138527205774610877 CrossRefGoogle Scholar
  21. David C, Kaulich B, Barrett R, Salomé M, Susini J (2000) High-resolution lenses for sub-100 nm x-ray fluorescence microscopy. Appl Phys Lett 77:3851–3853 doi:10.1063/1.1329638 CrossRefGoogle Scholar
  22. Davis TJ, Gao D, Gureyev TE, Stevenson AW, Wilkins SW (1995) Phase contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598 doi:10.1038/373595a0 CrossRefGoogle Scholar
  23. De Angelis M, Morel-Fourcade MC, Barnola JM, Susini J, Duval P (2005) Brine micro-droplets and solid inclusions in accreted ice from Lake Vostok (East Antarctica). Geophys Res Lett 32:L12501 doi:10.1029/2005GL022460 CrossRefGoogle Scholar
  24. de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168 doi:10.1016/j.chemosphere.2004.01.028 PubMedCrossRefGoogle Scholar
  25. De Samber B, Silversmit G, Evens R, De Schamphelaere K, Janssen C, Masschaele B, Van Hoorebeke L, Balcaen L, Vanhaecke F, Falkenberg G, Vincze L (2008) Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: developments and applications in environmental chemistry. Anal Bioanal Chem 390:267–271 doi:10.1007/s00216-007-1694-0 PubMedCrossRefGoogle Scholar
  26. de Vives AES, Moreira S, Brienza SMB, Medeiros JGS, Tomazello M, Zucchi O, do Nascimento VF (2006) Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence. Spectroch Acta Part B-Atom Spectrosc 61:1170–1174 doi:10.1016/j.sab.2006.08.007 CrossRefGoogle Scholar
  27. Dhez P, Chevallier P, Lucatorto TB, Tarrio C (1999) Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev Sci Instrum 70:1907–1920 doi:10.1063/1.1149733 CrossRefGoogle Scholar
  28. Di Fabrizio E, Romanato F, Gentili M, Cabrini S, Kaulich B, Susini J, Barrett R (1999) High-efficiency multilevel zone plates for keV x-rays. Nature 401:895–898CrossRefGoogle Scholar
  29. Doe J (2003) Molecular environmental science: an assessment of research accomplishments, available synchrotron radiation facilities, and needs, http://www.slac.stanford.edu/cgi-wrap/pubpage?SLAC-R-704
  30. Doelsch E, Basile-Doelsch I, Rose J, Masion A, Borschneck D, Hazemann JL, Saint Macary H, Borrero JY (2006) New combination of EXAFS spectroscopy and density fractionation for the speciation of chromium within an andosol. Environ Sci Technol 40:7602–7608 doi:10.1021/es060906q PubMedCrossRefGoogle Scholar
  31. Dokken KM, Davis LC, Erickson LE, Castro-Diaz S, Marinkovic NS (2005a) Synchrotron fourier transform infrared micro spectroscopy: a new tool to monitor the fate of organic contaminants in plants. Microchem J 81:86–91 doi:10.1016/j.microc.2005.01.022 CrossRefGoogle Scholar
  32. Dokken KM, Davis LC, Marinkovic NS (2005b) Using SR-IMS to study the fate and transport of organic contaminants in plants. Spectroscopy 20:14–20Google Scholar
  33. Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554 doi:10.1104/pp.106.084079 PubMedCrossRefGoogle Scholar
  34. Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, Rivers M, Young IM (2006) Three-dimensional microorganization of the soil-root-microbe system. Microb Ecol 52:151–158 doi:10.1007/s00248-006-9062-8 PubMedCrossRefGoogle Scholar
  35. Flank A-M, Cauchon G, Lagarde P, Bac S, Janousch M, Wetter R, Dubuisson JM, Idir M, Langlois F, Moreno T, Vantelon D (2006) LUCIA, a microfocus soft XAS beamline. Nucl Instrum Methods Phys Res B 246:269–274 doi:10.1016/j.nimb.2005.12.007 CrossRefGoogle Scholar
  36. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134 doi:10.1104/pp.106.081158 PubMedCrossRefGoogle Scholar
  37. Friedrich S (2006) Cryogenic X-ray detectors for synchrotron science. J Synchrotron Radiat 13:159–171 doi:10.1107/S090904950504197X PubMedCrossRefGoogle Scholar
  38. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401 doi:10.1021/nl015673+ CrossRefGoogle Scholar
  39. Gardea-Torresdey J, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Cruz-Jimenez G (2005a) Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Anal Bioanal Chem 382:347–352 doi:10.1007/s00216-004-2966-6 PubMedCrossRefGoogle Scholar
  40. Gardea-Torresdey JL, Peralta-Videa JR, de la Rosa G, Parsons JG (2005b) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810 doi:10.1016/j.ccr.2005.01.001 CrossRefGoogle Scholar
  41. Gilfrich JV, Gilfrich NL, Skelton EF, Kirkland JP, Qadri SB, Nagel DJ (1991) X-ray-fluorescence analysis of tree rings. X-Ray Spectrom 20:203–208 doi:10.1002/xrs.1300200410 CrossRefGoogle Scholar
  42. Golosio B, Somogyi A, Simionovici A, Bleuet P, Susini J, Lemelle L (2004) Nondestructive three-dimensional elemental microanalysis by combined helical X-ray microtomographies. Appl Phys Lett 84:2199–2201 doi:10.1063/1.1686892 CrossRefGoogle Scholar
  43. Hale KL, McGrath SP, Lombi E, Stack SM, Terry N, Pickering IJ, George GN, Pilon-Smits EAH (2001) Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol 126:1391–1402 doi:10.1104/pp.126.4.1391 PubMedCrossRefGoogle Scholar
  44. Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868 doi:10.1021/es0105459 PubMedCrossRefGoogle Scholar
  45. Hettiarachchi GM, McLaughlin MJ, Scheckel KG, Chittleborough DJ, Newville M, Sutton S, Lombi E (2008) Evidence for different reaction pathways for liquid and granular micronutrients in a calcareous soil. Soil Sci Soc Am J 72:98–110 doi:10.2136/sssaj2007.0058 CrossRefGoogle Scholar
  46. Hignette O, Cloetens P, Rostaing G, Bernard P, Morawe C (2005) Efficient sub 100 nm focusing of hard x rays. Rev Sci Instrum 76:063709 article n doi:10.1063/1.1928191 CrossRefGoogle Scholar
  47. Hokura A, Omuma R, Terada Y, Kitajima N, Abe T, Saito H, Yoshida S, Nakai I (2006) Arsenic distribution and speciation in an arsenic hyperaccumulator fern by X-ray spectrometry utilizing a synchrotron radiation source. J Anal At Spectrom 21:321–328 doi:10.1039/b512792k CrossRefGoogle Scholar
  48. Holman HYN, Nieman K, Sorensen DL, Miller CD, Martin MC, Borch T, McKinney WR, Sims RC (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36:1276–1280 doi:10.1021/es0157200 PubMedCrossRefGoogle Scholar
  49. Hornberger B, Feser M, Jacobsen C (2007) Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope. Ultramicroscopy 107:644–655 doi:10.1016/j.ultramic.2006.12.006 PubMedCrossRefGoogle Scholar
  50. Hornberger B, de Jonge MD, Feser M, Holl P, Holzner C, Jacobsen C, Legnini D, Paterson D, Rehak P, Strüder L, Vogt S (2008) Differential phase contrast with a segmented detector in a scanning X-ray microprobe. J Synchrotron Radiat 15:355–362 doi:10.1107/S0909049508008509 PubMedCrossRefGoogle Scholar
  51. Horowitz P, Howell JA (1972) A scanning X-ray microscope using synchrotron radiation. Science 10:608–611 doi:10.1126/science.178.4061.608 CrossRefGoogle Scholar
  52. Hoshino M, Ishino T, Namiki T, Yamada N, Watanabe N, Aoki S (2007) Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope. Rev Sci Instrum 78:073706 article n doi:10.1063/1.2756632 PubMedCrossRefGoogle Scholar
  53. Huang ZC, Chen TB, Lei M, Liu YR, Hu TD (2008) Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and -hypertolerant plants. Environ Sci Technol 42:5106–5111 doi:10.1021/es703243h PubMedCrossRefGoogle Scholar
  54. Hunter DB, Bertsch PM (1998) In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies. J Radioanal Nucl Chem 234:237–242 doi:10.1007/BF02389778 CrossRefGoogle Scholar
  55. Ice GE (1997) Microbeam-forming methods for synchrotron radiation. X-Ray Spectrom 26:315–326 doi:10.1002/(SICI)1097-4539(199711/12)26:6<315::AID-XRS229>3.0.CO;2-N CrossRefGoogle Scholar
  56. Isaure MP, Manceau A, Geoffroy N, Laboudigue A, Tamura N, Marcus MA (2005) Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochim Cosmochim Acta 69:1173–1198 doi:10.1016/j.gca.2004.08.024 CrossRefGoogle Scholar
  57. Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006a) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta Part B-Atom Spectrosc 61:1242–1252 doi:10.1016/j.sab.2006.10.009 CrossRefGoogle Scholar
  58. Isaure MP, Fraysse A, Deves G, Le Lay P, Fayard B, Susini J, Bourguignon J, Ortega R (2006b) Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochimie 88:1583–1590 doi:10.1016/j.biochi.2006.08.006 PubMedCrossRefGoogle Scholar
  59. Jacobsen C, Wirick S, Flynn G, Zimba C (2000) Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J Microscopy-Oxford 197:173–184 doi:10.1046/j.1365-2818.2000.00640.x CrossRefGoogle Scholar
  60. Jacobson AR, Dousset S, Andreux F, Baveye PC (2007) Electron microprobe and synchrotron X-ray fluorescence mapping of the heterogeneous distribution of copper in high-copper vineyard soils. Environ Sci Technol 41:6343–6349 doi:10.1021/es070707m PubMedCrossRefGoogle Scholar
  61. Jahn T, Baluska F, Michalke W, Harper JF, Volkmann D (1998) Plasma membrane H+-ATPase in the root apex: evidence for strong expression in xylem parenchyma and asymmetric localization within cortical and epidermal cells. Physiol Plant 104:311–316 doi:10.1034/j.1399-3054.1998.1040304.x CrossRefGoogle Scholar
  62. Jokic A, Cutler JN, Anderson DW, Walley FL (2004) Detection of heterocyclic N compounds in whole soils using N-XANES spectroscopy. Can J Soil Sci 84:291–293Google Scholar
  63. Kamijo N, Syuzuki Y, Takano H, Tamura S, Yasumoto M, Takeuchi A, Awaji M (2003) Microbeam of 100 keV x ray with a sputtered-sliced Fresnel zone plate. Rev Sci Instrum 74:5101–5104 doi:10.1063/1.1614882 CrossRefGoogle Scholar
  64. Kang HC, Maser J, Stephenson GB, Liu C, Conley R, Macrander AT, Vogt S (2006) Nanometer linear focusing of hard X-rays by a multilayer Laue lens. Phys Rev Lett 96:127401–127403 doi:10.1103/PhysRevLett.96.127401 PubMedCrossRefGoogle Scholar
  65. Kaste JM, Bostick BC, Friedland AJ, Schroth AW, Siccama TG (2006) Fate and speciation of gasoline-derived lead in organic horizons of the northeastern USA. Soil Sci Soc Am J 70:1688–1698 doi:10.2136/sssaj2005.0321 CrossRefGoogle Scholar
  66. Kaulich B, Wilhein T, Fabrizio ED, Romanato F, Altissimo M, Cabrini S, Fayard B, Susini J (2002) Differential interference contrast x-ray microscopy with twin zone plates. J Opt Soc Am A 19:797–806 doi:10.1364/JOSAA.19.000797 CrossRefGoogle Scholar
  67. Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298 doi:10.1126/science.1132563 PubMedCrossRefGoogle Scholar
  68. Kinyangi J, Solomon D, Liang BI, Lerotic M, Wirick S, Lehmann J (2006) Nanoscale biogeocomplexity of the organomineral assemblage in soil: application of STXM microscopy and C 1s-NEXAFS spectroscopy. Soil Sci Soc Am J 70:1708–1718 doi:10.2136/sssaj2005.0351 CrossRefGoogle Scholar
  69. Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190 doi:10.1016/j.gca.2006.02.006 CrossRefGoogle Scholar
  70. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New YorkGoogle Scholar
  71. Kramer U, Cotter Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638 doi:10.1038/379635a0 CrossRefGoogle Scholar
  72. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353 doi:10.1104/pp.122.4.1343 PubMedCrossRefGoogle Scholar
  73. Langer M, Cloetens P, Guigay JP, Peyrin F (2008) Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography. Med Phys 35(10):4556–4566 doi:10.1118/1.2975224 PubMedCrossRefGoogle Scholar
  74. Lechner P, Fiorini C, Hartmann R, Kemmer J, Krause N, Leutenegger P, Longoni A, Soltau H, Stoeter D, Stoetter R, Strueder L, Weber U (2001) Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. NIMA 458:281–287 doi:10.1016/S0168-9002(00)00872-X CrossRefGoogle Scholar
  75. Leguedois S, van Oort F, Jongmans T, Chevallier P (2004) Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution. Environ Pollut 130:135–148 doi:10.1016/j.envpol.2003.12.023 PubMedCrossRefGoogle Scholar
  76. Lehmann J, Liang BQ, Solomon D, Lerotic M, Luizao F, Kinyangi J, Schafer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochem Cycles 19:GB1013 doi:10.1029/2004GB002435 CrossRefGoogle Scholar
  77. Lehmann J, Solomon D, Zhao FJ, McGrath SP (2008) Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. Environ Sci Technol 42:3550–3555 doi:10.1021/es702315g PubMedCrossRefGoogle Scholar
  78. Leinweber P, Kruse J, Walley FL, Gillespie A, Eckhardt KU, Blyth RIR, Regier T (2007) Nitrogen K-edge XANES - An overview of reference compounds used to identify ‘unknown’ organic nitrogen in environmental samples. J Synchrotron Radiat 14:500–511 doi:10.1107/S0909049507042513 PubMedCrossRefGoogle Scholar
  79. Leri AC, Hay MB, Lanzirotti A, Rao W, Myneni SCB (2006) Quantitative determination of absolute organohalogen concentrations in environmental samples by X-ray absorption spectroscopy. Anal Chem 78:5711–5718 doi:10.1021/ac060476m PubMedCrossRefGoogle Scholar
  80. Letard I, Tucoulou R, Bleuet P, Martínez-Criado G, Somogyi A, Vincze L, Morse J, Susini J (2006) A multi-element Si(Li) Detector for the hard x-ray micro-probe at ID22 (ESRF). Rev Sci Instrum 77:063705 doi:10.1063/1.2209961 CrossRefGoogle Scholar
  81. Libera J, Cai Z, Lai B, Xu S (2002) Integration of a hard x-ray microprobe with a diffractometer for microdiffraction. Rev Sci Instrum 73:506–1508 doi:10.1063/1.1435815 CrossRefGoogle Scholar
  82. Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736 doi:10.1021/es060800v PubMedCrossRefGoogle Scholar
  83. Lombi E, Wenzel WW, Gobran GR, Adriano DC (2001) Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: a review. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, Boca Raton, pp 3–24Google Scholar
  84. Lombi E, Zhao FJ, Wieshammer G, Zhang GY, McGrath SP (2002a) In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut 118:445–452 doi:10.1016/S0269-7491(01)00295-0 PubMedCrossRefGoogle Scholar
  85. Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002b) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203 doi:10.1046/j.1469-8137.2002.00512.x CrossRefGoogle Scholar
  86. Lombi E, Scheckel KG, Armstrong RD, Forrester S, Cutler JN, Paterson D (2006) Speciation and distribution of phosphorus in a fertilized soil: a synchrotron-based investigation. Soil Sci Soc Am J 70:2038–2048 doi:10.2136/sssaj2006.0051 CrossRefGoogle Scholar
  87. Lutz G (2006) Silicon drift and pixel devices for X-ray imaging and Spectroscopy. J Synchrotron Radiat 13:99–109 doi:10.1107/S0909049506002214 PubMedCrossRefGoogle Scholar
  88. Manceau A, Boisset MC, Sarret G, Hazemann RL, Mench M, Cambier P, Prost R (1996) Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ Sci Technol 30:1540–1552 doi:10.1021/es9505154 CrossRefGoogle Scholar
  89. Manceau A, Marcus MA, Tamura N (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. In: Fenter P, Rivers M, Sturchio NC, Sutton S (eds) Rev. in mineralogy and geochemistry, vol 49: Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Mineralogical Society of America, Washington, DC, pp 341–428Google Scholar
  90. Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. Environ Sci Technol 37:75–80 doi:10.1021/es025748r PubMedCrossRefGoogle Scholar
  91. Manceau A, Marcus MA, Tamura N, Proux O, Geoffroy N, Lanson B (2004) Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 68:2467–2483 doi:10.1016/j.gca.2003.11.021 CrossRefGoogle Scholar
  92. Manceau A, Tommaseo C, Rihs S, Geoffroy N, Chateigner D, Schlegel M, Tisserand D, Marcus MA, Tamura N, Chen ZS (2005) Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 69:4007–4034 doi:10.1016/j.gca.2005.03.018 CrossRefGoogle Scholar
  93. Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper manoparticles at the soil-root interface. Environ Sci Technol 42:1766–1772 doi:10.1021/es072017o PubMedCrossRefGoogle Scholar
  94. Marcus MA, MacDowell AA, Celestre R, Manceau A, Miller T, Padmore HA, Sublett RE (2004) Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences. J Synchrotron Radiat 11:239–247 doi:10.1107/S0909049504005837 PubMedCrossRefGoogle Scholar
  95. Martin MC, McKinney WR (2001) The first synchrotron infrared beamlines at the Advanced Light Source: spectromicroscopy and fast timing. Ferroelectrics 249:1–10 doi:10.1080/00150190108214960 CrossRefGoogle Scholar
  96. Martin RR, Sham TK, Won GW, Jones KW, Feng H (2001) Synchrotron x-ray fluorescence and secondary ion mass spectrometry in tree ring microanalysis: applications to dendroanalysis. X-Ray Spectrom 30:338–341 doi:10.1002/xrs.507 CrossRefGoogle Scholar
  97. Martin RR, Naftel SJ, Macfie SM, Jones KW, Feng H, Trembley C (2006) High variability of the metal content of tree growth rings as measured by synchrotron micro X-ray fluorescence spectrometry. X-Ray Spectrom 35:57–62 doi:10.1002/xrs.817 CrossRefGoogle Scholar
  98. Martinez CE, Bazilevskaya KA, Lanzirotti A (2006) Zinc coordination to multiple ligand atoms in organic-rich surface soils. Environ Sci Technol 40:5688–5695 doi:10.1021/es0608343 PubMedCrossRefGoogle Scholar
  99. Martinez-Criado G, Steinmann R, Alen B, Labrador A, Homs A, Fuster D, Ripalda JM, Susini J (2007) New cryogenic environment for ID22. Rev Sci Instrum 78(2):025106PubMedCrossRefGoogle Scholar
  100. McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218 doi:10.1021/es0492034 PubMedCrossRefGoogle Scholar
  101. McNear DH, Chaney RL, Sparks DL (2007) The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: a multi-technique investigation. Geochim Cosmochim Acta 71:2190–2208 doi:10.1016/j.gca.2007.02.006 CrossRefGoogle Scholar
  102. Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu YG, Islam R (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42:1051–1057 doi:10.1021/es702212p PubMedCrossRefGoogle Scholar
  103. Meitzner G, Gardea-Toffesdey J, Parsons J, Scott SL, Deguns EW (2005) The effect of cryogenic sample cooling on X-ray absorption spectra. Microchem J 81:61–68 doi:10.1016/j.microc.2005.01.006 CrossRefGoogle Scholar
  104. Mench M, Vangronsveld J, Lepp N, Ruttns A, Bleeker P, Geebelen W (2007) Use of soil amendments to attenuate trace element exposure: sustainability, side effects and failures. In: Hamon RE, Lombi E, McLaughlin MJ (eds) Natural attenuation of metal availability in soils. SETAC, Pensacola, pp 197–227Google Scholar
  105. Métrich N, Susini J, Foy E, Farges F, Massare D, Sylla L, Lequien S, Bonnin-Mosbah M (2006) Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro spectroscopy experiments at high temperature. Chem Geol 231:350–363 doi:10.1016/j.chemgeo.2006.02.001 CrossRefGoogle Scholar
  106. Miao J, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–344 doi:10.1038/22498 CrossRefGoogle Scholar
  107. Milham PJ, Payne TE, Lai B, Trautman RL, Cai Z, Holford P, Haigh AM, Conroy JP (2007) Can synchrotron micro-x-ray fluorescence spectroscopy be used to map the distribution of cadmium in soil particles? Aust J Soil Res 45:624–628 doi:10.1071/SR06179 CrossRefGoogle Scholar
  108. Mimura H, Yumoto H, Matsuyama S, Sano Y, Yamamura K, Mori Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K (2007) Efficient focusing of hard x rays to 25 nm by a total reflection mirror. Appl Phys Lett 90:051903 doi:10.1063/1.2436469 CrossRefGoogle Scholar
  109. Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69:1695–1709 doi:10.1016/j.phytochem.2008.02.009 PubMedCrossRefGoogle Scholar
  110. Munoz M, De Andrade V, Vidal O, Lewin E, Pascarelli S, Susini J (2006) Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron in chlorite mineral of a metamorphic rock thin section. Geochem Geophys Geosyst 7:Q11020 doi:10.1029/2006GC001381 CrossRefGoogle Scholar
  111. Nachtegaal M, Marcus MA, Sonke JE, Vangronsveld J, Livi KJT, van Der Lelie D, Sparks DL (2005) Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil. Geochim Cosmochim Acta 69:4649–4664 doi:10.1016/j.gca.2005.05.019 CrossRefGoogle Scholar
  112. Negra C, Ross DS, Lanzirotti A (2005) Soil manganese oxides and trace metals: competitive sorption and microfocused synchrotron X-ray fluorescence mapping. Soil Sci Soc Am J 69:353–361CrossRefGoogle Scholar
  113. Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils - Why bother with speciation? Aust J Chem 56:77–91 doi:10.1071/CH02226 CrossRefGoogle Scholar
  114. Nunan N, Ritz K, Rivers M, Feeney DS, Young IM (2006) Investigating microbial micro-habitat structure using X-ray computed tomography. Geoderma 133:398–407 doi:10.1016/j.geoderma.2005.08.004 CrossRefGoogle Scholar
  115. Oger PM, Daniel I, Picard A (2006) Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T. Biochim Biophys Acta 1764:434–442PubMedGoogle Scholar
  116. Owens A (2006) Semiconductor materials and radiation detection. J Synchrotron Radiat 13:143–150 doi:10.1107/S0909049505033339 PubMedCrossRefGoogle Scholar
  117. Panfili FR, Manceau A, Sarret G, Spadini L, Kirpichtchikova T, Bert V, Laboudigue A, Marcus MA, Ahamdach N, Libert MF (2005) The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis. Geochim Cosmochim Acta 69:2265–2284 doi:10.1016/j.gca.2004.10.017 CrossRefGoogle Scholar
  118. Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J (2006) Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications. J Synchrotron Radiat 13:351–358 doi:10.1107/S0909049506026938 PubMedCrossRefGoogle Scholar
  119. Pickering IJ, Prince RC, Salt DE, George GN (2000a) Quantitative, chemically specific imaging of selenium transformation in plants. Proc Natl Acad Sci U S A 97:10717–10722 doi:10.1073/pnas.200244597 PubMedCrossRefGoogle Scholar
  120. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000b) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177 doi:10.1104/pp.122.4.1171 PubMedCrossRefGoogle Scholar
  121. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014 doi:10.1021/es052559a PubMedCrossRefGoogle Scholar
  122. Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ, Arenas J (2000) XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchem J 65:227–236 doi:10.1016/S0026-265X(00)00055-2 CrossRefGoogle Scholar
  123. Pollock HC (1983) The discovery of synchrotron radiation Am J Phys 51:278–280CrossRefGoogle Scholar
  124. Prietzel J, Thieme J, Neuhausler U, Susini J, Kogel-Knabner I (2003) Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. Eur J Soil Sci 54:423–433 doi:10.1046/j.1365-2389.2003.00543.x CrossRefGoogle Scholar
  125. Prietzel J, Thieme J, Eusterhues K, Eichert D (2007) Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, mu-XANES). Eur J Soil Sci 58:1027–1041 doi:10.1111/j.1365-2389.2006.00882.x CrossRefGoogle Scholar
  126. Punshon T, Bertsch PM, Lanzirotti A, McLeod K, Burger J (2003) Geochemical signature of contaminated sediment remohilization revealed by spatially resolved X-ray microanalysis of annual rings of Salix nigra. Environ Sci Technol 37:1766–1774 doi:10.1021/es0261628 PubMedCrossRefGoogle Scholar
  127. Punshon T, Jackson BP, Lanzirotti A, Hopkins WA, Bertsch PM, Burger J (2005a) Application of synchrotron x-ray microbeam spectroscopy to the determination of metal distribution and speciation in biological tissues. Spectrosc Lett 38:343–363 doi:10.1081/SL-200058715 CrossRefGoogle Scholar
  128. Punshon T, Lanzirotti A, Harper S, Bertsch PM, Burger J (2005b) Distribution and speciation of metals in annual rings of black willow. J Environ Qual 34:1165–1173 doi:10.2134/jeq2004.0461 PubMedCrossRefGoogle Scholar
  129. Raab TK, Martin MC (2001) Visualizing rhizosphere chemistry of legumes with mid-infrared synchrotron radiation. Planta 213:881–887PubMedCrossRefGoogle Scholar
  130. Roberts DR, Scheinost AC, Sparks DL (2002) Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Environ Sci Technol 36:1742–1750 doi:10.1021/es015516c PubMedCrossRefGoogle Scholar
  131. Rodenburg JM, Hursta AC, Cullisa AG (2007) Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107:227–231 doi:10.1016/j.ultramic.2006.07.007 PubMedCrossRefGoogle Scholar
  132. Rodriguez E, Peralta-Videa JR, Sanchez-Salcido B, Parsons JG, Romero J, Gardea-Torresdey JL (2007) Improving gold phytoextraction in desert willow (Chilopsis linearis) using thiourea: a spectroscopic investigation. Environ Chem 4:98–108 doi:10.1071/EN06048 CrossRefGoogle Scholar
  133. Ryan JA, Zhang PC, Hesterberg D, Chou J, Sayers DE (2001) Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ Sci Technol 35:3798–3803 doi:10.1021/es010634l PubMedCrossRefGoogle Scholar
  134. Ryan CG, Siddons DP, Moorhead G, Kirkham R, Dunn PA, Dragone A, De Geronimo G (2007) Large detector array and real-time processing and elemental image projection of X-ray and proton microprobe fluorescence data. Nucl Instrum Methods Phys Res B 260:1–7 doi:10.1016/j.nimb.2007.01.271 CrossRefGoogle Scholar
  135. Ryser AL, Strawn DG, Marcus MA, Fakra S, Johnson-Maynard JL, Moller G (2006) Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands. Environ Sci Technol 40:462–467 doi:10.1021/es051674i PubMedCrossRefGoogle Scholar
  136. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433PubMedGoogle Scholar
  137. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717 doi:10.1021/es980825x CrossRefGoogle Scholar
  138. Salt DE, Prince RC, Pickering IJ (2002) Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem J 71:255–259 doi:10.1016/S0026-265X(02)00017-6 CrossRefGoogle Scholar
  139. Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffiere JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Instrum Methods Phys Res B 200:273–286 doi:10.1016/S0168-583X(02)01689-0 CrossRefGoogle Scholar
  140. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse AS, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826 doi:10.1104/pp.007799 PubMedCrossRefGoogle Scholar
  141. Sarret G, Balesdent J, Bouziri L, Garnier JM, Marcus MA, Geoffroy N, Panfili F, Manceau A (2004) Zn speciation in the organic horizon of a contaminated soil by micro-x-ray fluorescence, micro- and powder-EXAFS spectroscopy, and isotopic dilution. Environ Sci Technol 38:2792–2801 doi:10.1021/es035171t PubMedCrossRefGoogle Scholar
  142. Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034 doi:10.1104/pp.106.082743 PubMedCrossRefGoogle Scholar
  143. Sayre D (1952) Some implications of a theorem due to Shannon. Acta Crystallogr 5:843–843 doi:10.1107/S0365110X52002276 CrossRefGoogle Scholar
  144. Scheckel KG, Ryan JA (2002) Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ Sci Technol 36:2198–2204 doi:10.1021/es015803g PubMedCrossRefGoogle Scholar
  145. Scheckel KG, Impellitteri C, Ryan JA (2003) Assessment of a sequential extraction procedure for perturbed lead contaminated samples with and without phosphorus amendments. Environ Sci Technol 9:1892–1898 doi:10.1021/es026160n CrossRefGoogle Scholar
  146. Scheckel KG, Lombi E, Rock SA, McLaughlin MJ (2004) In vivo synchrotron study of thallium speciation and compartmentation in lberis intermedia. Environ Sci Technol 38:5095–5100 doi:10.1021/es049569g PubMedCrossRefGoogle Scholar
  147. Scheckel KG, Hamon R, Jassogne L, Rivers M, Lombi E (2007) Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 290:51–60 doi:10.1007/s11104-006-9102-7 CrossRefGoogle Scholar
  148. Scheinost AC, Kretzschmar R, Pfister S, Roberts DR (2002) Combining selective sequential extractions, x-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Environ Sci Technol 36:5021–5028 doi:10.1021/es025669f PubMedCrossRefGoogle Scholar
  149. Schmidt C, Rickers K, Wirth R, Nasdala L, Hanchar JM (2006) Low-temperature Zr mobility: an in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O+HCl± SiO2 fluids. Am Mineral 91:1211–1215 doi:10.2138/am.2006.2244 CrossRefGoogle Scholar
  150. Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801 doi:10.1104/pp.122.3.793 PubMedCrossRefGoogle Scholar
  151. Schroer C, Lengeler B (2005) Focusing hard X rays to nanometer dimensions by adiabatically focusing lenses. Phys Rev Lett 94:054802 doi:10.1103/PhysRevLett.94.054802 PubMedCrossRefGoogle Scholar
  152. Schroer CG, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, Van der Hart A, Kuchler M (2005) Hard x-ray nanoprobe based on refractive x-ray lenses. Appl Phys Lett 87:124103–124105 doi:10.1063/1.2053350 CrossRefGoogle Scholar
  153. Schulze DG, Bertsch PM (1995) Synchrotron X-ray techniques in soil, plant, and environmental research. Adv Agron 55:1–66 doi:10.1016/S0065-2113(08)60537-4 CrossRefGoogle Scholar
  154. Schumacher M, Christl I, Scheinost AC, Jacobsen C, Kretzschmar R (2005) Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. Environ Sci Technol 39:9094–9100 doi:10.1021/es050099f PubMedCrossRefGoogle Scholar
  155. Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman AM, Sayre D (2005) Biological imaging by soft x-ray diffraction microscopy. Proc Natl Acad Sci USA 102:15343–15346 doi:10.1073/pnas.0503305102 PubMedCrossRefGoogle Scholar
  156. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142 doi:10.1021/es062929a PubMedCrossRefGoogle Scholar
  157. Smith PG, Koch I, Gordon RA, Mandoli DF, Chapman BD, Reimer KJ (2005) X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ Sci Technol 39:248–254 doi:10.1021/es049358b PubMedCrossRefGoogle Scholar
  158. Snigirev A, Snigireva I (2008) Hard X-ray microoptics. Springer Series in Optical Sciences. In: Erko A, Idir M, Krist T, Michette AG (eds) Modern developments in X-ray and neutron optics. Springer, New York, pp 255–285CrossRefGoogle Scholar
  159. Snigirev A, Kohn V, Snigireva I, Lengeler B (1996) A compound refractive lens for focusing high-energy X-rays. Nature 384:49–51 doi:10.1038/384049a0 CrossRefGoogle Scholar
  160. Snigireva I, Snigirev A (2006) X-ray microanalytical techniques based on synchrotron radiation. J Environ Monit 8:33–42 doi:10.1039/b511446m PubMedCrossRefGoogle Scholar
  161. Snigireva I, Snigirev A, Vaughan G, Di Michiel M, Kohn V, Yunkin V, Grigoriev M (2006) Stacked Fresnel zone plates for high energy X-rays. AIP Conf Proc 879:998–1001 doi:10.1063/1.2436230 CrossRefGoogle Scholar
  162. Solé VA, Papillon E, Cotte M, Walter PH, Susini J (2007) PyMCA: a multiplatform code for the analysis of energy-dispersive X-ray spectra. Spectrochim Acta Part B 62:63–68 doi:10.1016/j.sab.2006.12.002 CrossRefGoogle Scholar
  163. Solomon D, Lehmann J, Martinez CE (2003) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Sci Soc Am J 67:1721–1731Google Scholar
  164. Solomon D, Lehmann J, Kinyangi J, Liang BQ, Schafer T (2005a) Carbon K-edge NEXAFS and FTIR-ATR spectroscopic investigation of organic carbon speciation in soils. Soil Sci Soc Am J 69:107–119Google Scholar
  165. Solomon D, Lehmann J, Lobe I, Martinez CE, Tveitnes S, Du Preez CC, Amelung W (2005b) Sulphur speciation and biogeochemical cycling in long-term arable cropping of subtropical soils: evidence from wet-chemical reduction and SK-edge XANES spectroscopy. Eur J Soil Sci 56:621–634 doi:10.1111/j.1365-2389.2005.00702.x CrossRefGoogle Scholar
  166. Somogyi A, Drakopoulos M, Vincze L, Vekemans B, Camerani C, Janssens K, Snigirev A, Adams F (2001) ID18F: a new micro-x-ray fluorescence end-station at the European Synchrotron Radiation Facility (ESRF): preliminary results. X-Ray Spectrom 30:242–252 doi:10.1002/xrs.494 CrossRefGoogle Scholar
  167. Somogyi A, Tucoulou R, Martinez-Criado G, Homs A, Cauzid J, Bleuet P, Bohic S, Simionovici A (2005) ID22: a multitechnique hard X-ray microprobe beamline at the European Synchrotron Radiation Facility. J Synchrotron Radiat 12:208–215 doi:10.1107/S0909049504030882 PubMedCrossRefGoogle Scholar
  168. Sørensen J, Jensen LE, Nybroe O (2001) Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant Soil 232:97–108 doi:10.1023/A:1010338103982 CrossRefGoogle Scholar
  169. Stacey SP, McLaughlin MJ, Cakmak I, Hetitiarachchi GM, Scheckel KG, Karkkainen M (2008) Root uptake of lipophilic zinc-rhamnolipid complexes. J Agric Food Chem 56:2112–2117 doi:10.1021/jf0729311 PubMedCrossRefGoogle Scholar
  170. Straczek A, Sarret G, Manceau A, Hinsinger P, Geoffroy N, Jaillard B (2008) Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environ Exp Bot 63:80–90 doi:10.1016/j.envexpbot.2007.10.034 CrossRefGoogle Scholar
  171. Strawn DG, Baker LL (2008) Speciation of Cu in a contaminated agricultural soil measured by XAFS, mu-XAFS, and mu-XRF. Environ Sci Technol 42:37–42 doi:10.1021/es071605z PubMedCrossRefGoogle Scholar
  172. Susini J, Salomé M, Fayard B, Ortega R, Kaulich B (2002) The scanning X-ray microprobe at the ESRF “X-ray microscopy” beamline. Surf Rev Lett 9:203–211 doi:10.1142/S0218625X02001793 CrossRefGoogle Scholar
  173. Susini J, Salomé M, Tucoulou R, Martinez-Criado G, Bohic S, Eichert D, Bleuet P, Letard I, Cotte M, Cauzid J, Fayard B, Baker R, Labouré S (2006) X-ray micro-analysis activities at the ESRF. Proc 8th Int Conf X-ray Microscopy IPAP Conf Series 7:18Google Scholar
  174. Sutton SR, Rivers ML, Bajt S, Jones K, Smith JV (1994) Synchrotron X-ray-fluorescence microprobe - a microanalytical instrument for trace-element studies in geochemistry, cosmochemistry, and the soil and environmental sciences. Nucl Instrum Methods Phys Res A 347:412–416 doi:10.1016/0168-9002(94)91919-4 CrossRefGoogle Scholar
  175. Tabatabai MA (1982) Sulfur. In: Page AL et al (ed) Methods of soil analyses: part 2. Agron. Monogr. 9, 2nd edn. ASA SSSA, Madison, pp 501–538Google Scholar
  176. Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654 doi:10.1111/j.1469-8137.2007.02134.x PubMedCrossRefGoogle Scholar
  177. Terzano R, Spagnuolo M, Medici L, Vekemans B, Vincze L, Janssens K, Ruggiero P (2005) Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash. Environ Sci Technol 39:6280–6287 doi:10.1021/es050079d PubMedCrossRefGoogle Scholar
  178. Terzano R, Spagnuolo M, Vekemans B, De Nolf W, Janssens K, Falkenberg G, Flore S, Ruggiero P (2007) Assessing the origin and fate of Cr, Ni, Cu, Zn, Ph, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods. Environ Sci Technol 41:6762–6769 doi:10.1021/es070260h PubMedCrossRefGoogle Scholar
  179. Terzano R, Al Chami Z, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and Micro-XANES. J Agric Food Chem 56:3222–3231 doi:10.1021/jf073304e PubMedCrossRefGoogle Scholar
  180. Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F (2008) High-resolution scanning X-ray diffraction microscopy. Science 321:379–382 doi:10.1126/science.1158573 PubMedCrossRefGoogle Scholar
  181. Thieme J, McNulty I, Vogt S, Paterson D (2007) X-ray spectromicroscopy - A tool for environmental sciences. Environ Sci Technol 41:6885–6889 doi:10.1021/es0726254 PubMedCrossRefGoogle Scholar
  182. Thompson IA, Huber DM, Guest CA, Schulze DG (2005) Fungal manganese oxidation in a reduced soil. Environ Microbiol 7:1480–1487 doi:10.1111/j.1462-2920.2005.00842.x PubMedCrossRefGoogle Scholar
  183. Thurner P, Muller R, Raeber G, Sennhauser U, Hubbell J (2005) 3D morphology of cell cultures: a quantitative approach using micrometer synchrotron light tomography. Microsc Res Tech 66:289–298 doi:10.1002/jemt.20170 PubMedCrossRefGoogle Scholar
  184. Tokunaga T, Wan J, Lanzirotti A, Sutton S, Newville M, Rao W (2007) Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environ Sci Technol 41:4326–4331 doi:10.1021/es062874c PubMedCrossRefGoogle Scholar
  185. Tuniz C, Zanini F, Jones KW (1991) Probing the environment with accelerator-based techniques. Nucl Instrum Methods Phys Res Sect B 56-7:877–881 doi:10.1016/0168-583X(91)95051-E CrossRefGoogle Scholar
  186. Tylko G, Mesjasz-Przybylowicz J, Przybylowicz WJ (2007) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68 doi:10.1002/jemt.20387 PubMedCrossRefGoogle Scholar
  187. Vairavamurthy A, Wang S (2002) Organic nitrogen in geomacromolecules: insights on speciation and transformation with K-edge XANES spectroscopy. Environ Sci Technol 36:3050–3056 doi:10.1021/es0155478 PubMedCrossRefGoogle Scholar
  188. van Oort F, Jongmans AG, Citeau L, Lamy I, Chevallier P (2006) Microscale Zn and Pb distribution patterns in subsurface soil horizons: an indication for metal transport dynamics. Eur J Soil Sci 57:154–166 doi:10.1111/j.1365-2389.2005.00725.x CrossRefGoogle Scholar
  189. Vangronsveld J, Vanassche F, Clijsters H (1995) Reclamation of a bare industrial-area contaminated by nonferrous metals - in-situ metal immobilization and revegetation. Environ Pollut 87:51–59 doi:10.1016/S0269-7491(99)80007-4 PubMedCrossRefGoogle Scholar
  190. Vekemans B, Janssens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray Spectra by Iterative Least Squares (AXIL): new developments. X-Ray Spectrom 23:278–285 doi:10.1002/xrs.1300230609 CrossRefGoogle Scholar
  191. Vekemans B, Vincze L, Brenker FE, Adams F (2004) Processing of three dimensional microscopic X-ray fluorescence data. J Anal At Spectrom 19:1302–1308 doi:10.1039/b404300f CrossRefGoogle Scholar
  192. Verboven P, Kerckhofs G, Mebatsion HK, Ho QT, Temst K, Wevers M, Cloetens P, Nicolaı BM (2008) Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography. Plant Physiol 147:518–527 doi:10.1104/pp.108.118935 PubMedCrossRefGoogle Scholar
  193. Vincze L, Koen J, Bart V, Freddy A (2004a) Monte Carlo simulation for x-ray fluorescence spectroscopy. In: Tsuji K, Injuk J, Van Grieken R (eds) X-ray spectrometry based on recent technological advances. Wiley, Chichester, pp 435–462CrossRefGoogle Scholar
  194. Vincze L, Vekemans B, Brenker FE, Falkenberg G, Rickers K, Somogyi A, Kersten M, Adams F (2004b) Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. Anal Chem 76:6786–6791 doi:10.1021/ac049274l PubMedCrossRefGoogle Scholar
  195. Voegelin A, Weber FA, Kretzschmar R (2007) Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: micro-XRF element mapping and EXAFS spectroscopy. Geochim Cosmochim Acta 71:5804–5820 doi:10.1016/j.gca.2007.05.030 CrossRefGoogle Scholar
  196. Wasserman SR (1997) The analysis of mixtures: application of principal component analysis to XAS spectra. J Phys IV 7:203–205CrossRefGoogle Scholar
  197. Wasserman SR, Allen PG, Shuh DK, Bucher JJ, Edelstein NM (1999) EXAFS and principal component analysis: a new shell game. J Synchrotron Rad 6:284–286CrossRefGoogle Scholar
  198. Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyper-accumulating fern. Environ Sci Technol 37:754–760 doi:10.1021/es0258475 PubMedCrossRefGoogle Scholar
  199. Wilhein T, Kaulich B, Di Fabrizio E, Romanato F, Cabrini S, Susini J (2001) Differential interference contrast X-ray microscopy with submicron resolution. Appl Phys Lett 78:2082–2084 doi:10.1063/1.1360776 CrossRefGoogle Scholar
  200. Young SD, Zhang H, Tye AM, Maxted A, Thums C, Thornton I (2005) Characterizing the availability of metals in contaminated soils. I. The solid phase: sequential extraction and isotopic dilution. Soil Use Manage 21:450–458 doi:10.1079/SUM2005348 CrossRefGoogle Scholar
  201. Young LW, Westcott ND, Attenkofer K, Reaney MJT (2006) A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy. J Synchrotron Radiat 13:304–313 doi:10.1107/S0909049506019571 PubMedCrossRefGoogle Scholar
  202. Young LW, Westcott N, Christensen C, Terry J, Lydiate D, Reaney M (2007) Inferring the geometry of fourth-period metallic elements in Arabidopsis thaliana seeds using synchrotron-based multi-angle X-ray fluorescence mapping. Ann Bot (Lond) 100:1357–1365 doi:10.1093/aob/mcm205 CrossRefGoogle Scholar
  203. Yu PQ (2006) Synchrotron IR microspectroscopy for protein structure analysis: potential and questions. Spectroscopy 20:229–251Google Scholar
  204. Zhao FJ, Lehmann J, Solomon D, Fox MA, McGrath SP (2006) Sulphur speciation and turnover in soils: evidence from sulphur K-edge XANES spectroscopy and isotope dilution studies. Soil Biol Biochem 38:1000–1007 doi:10.1016/j.soilbio.2005.08.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Plant and Soil Science Laboratory, Department of Agriculture and Ecology, Faculty of Life ScienceUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.European Synchrotron Radiation Facility (ESRF)Grenoble CedexFrance

Personalised recommendations