Skip to main content
Log in

Grain yield, above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Considering the importance of acidic conditions and Al toxicity in arable soils of Chile, 2 field experiments were conducted in the 2005-06 and 2006-07 growing seasons in Valdivia (39°47′18′′S, 73°14′05′′W), Chile in an Andisol. The objective of this experiment was to quantitatively evaluate the effect of different soil exchangeable Al levels on grain yield, and above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under field conditions. Treatments were a factorial arrangement of: i) two spring wheat cultivars (Al-sensitive, Domo.INIA and Al-tolerant, Dalcahue.INIA) and ii) five exchangeable Al levels (0–2.7 cmol(+) kg−1). The experimental design consisted of a randomized complete block design with three replicates. At harvest, grain yield, grain number, thousand grain weight and above-ground biomass were recorded. At the same time, root samples were taken with the pinboard monolith method. Afterwards root biomass, root length density and specific root length were measured. Both above-ground and below-ground traits showed a wide range of values (e.g., between 10 to 2618 g m−2 and between 8 to 117 g m−2, for above-ground and root biomass, respectively) under the soil Al concentrations used in this study. Al tolerant and Al sensitive cultivars showed different sensitivities to Al toxicity. Interestingly, linear associations were found between grain yield or above-ground biomass and soil Al concentration in Al-sensitive (R2 = 0.95 p < 0.001 and R2 = 0.90 p < 0.001, respectively) and Al-tolerant (R2 = 0.91 p < 0.001 and R2 = 0.88 p < 0.001, respectively) cultivars. Soil Al concentration was found to have a much lower effect on the harvest index. A close, and unique, association was found for both cultivars between grain yield and above-ground biomass (R2 = 0.98 p < 0.001). Root biomass also showed a linear relationship with soil Al concentrations in both Al-sensitive (R2 = 0.96 p < 0.001) and Al-tolerant (R2 = 0.77 p < 0.001) cultivars. Root traits showed good relationships with both grain yield and above-ground biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility a handbook of methods. C.A.B International

  • Baggie I, Zapata F, Sanginga N (2002) Genotypic response to aluminum toxicity of some rice. Soil nutrient water management 42–43. Available via DIALOG. http://www.riceweb.org/publications/irrn/pdfs/vol27no1/irrn27-1soil.pdf. Accessed 7 April 2008

  • Bingham IJ (2001) Soil-root-canopy interactions. Ann Appl Biol 138:243–251. doi:10.1111/j.1744-7348.2001.tb00108.x

    Article  Google Scholar 

  • Bushamuka VN, Zobel RW (1998) Maize and soybean tap, basal, and lateral root responses to a stratified acid, aluminum-toxic soil. Crop Sci 38:416–421

    CAS  Google Scholar 

  • Caires EF, Garbuio FJ, Churka S, Barth G, Corrêa JCL (2008) Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. Eur J Agron 28:57–64. doi:10.1016/j.eja.2007.05.002

    Article  CAS  Google Scholar 

  • Costa A, Cogrossi LA, Riede CR (2003) Reaction of wheat genotypes to soil aluminum differential saturations. Braz Archieves Bio Technol 46:19–25

    CAS  Google Scholar 

  • De la Fuente JM, Herrera-Estrella L (1999) Advances in the understanding of aluminum toxicity and the development of aluminum-tolerant transgenic plants. Adv Agron 66:103–120. doi:10.1016/S0065-2113(08)60426-5

    Article  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993a) Aluminium tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993b) Aluminium tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    CAS  Google Scholar 

  • Dreccer F, Schapendonk AHCM, Slafer GA, Rabbinge R (2000) Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil 220:189–205. doi:10.1023/A:1004757124939

    Article  CAS  Google Scholar 

  • Gilbert JC, Gowing DJG, Loveland P (2003) Chemical amelioration of high phosphorus availability in soil to aid the restoration of species-rich grassland. Ecol Eng 19:297–304. doi:10.1016/S0925-8574(02)00123-4

    Article  Google Scholar 

  • Hede AR, Skovmand B, López-Cesati J (2001) Acid soils and aluminum toxicity. In: Reynolds MP, McNab A (eds) Application of Physiology in wheat breeding, CIMMYT, pp, 240

  • INE (1998) VI Censo Nacional Agropecuario 1997. INE, Santiago, Chile

    Google Scholar 

  • Islam MA, Milham PJ, Dowling PM, Jacobs BC, Garden DL (2004) Improved procedures for adjusting soil pH for pot experiments. Commun Soil Sci Plant Anal 35:25–37. doi:10.1081/CSS-120027632

    Article  CAS  Google Scholar 

  • Kariuki SK, Zhang H, Schroder JL, Edwards J, Payton M, Carver BF, Raun WR, Krenzer EG (2007) Hard red winter wheat cultivar responses to a pH and aluminum concentrations gradient. Agron J 99:88–98

    CAS  Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminum species. Plant Soil 134:167–178

    CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1994) AI+3-Ca+2 interactions in aluminum rhizotoxicity: II. Evaluating the CA+2-displacement hypothesis. Planta 192:104–109

    CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195. doi:10.1007/s11104-004-1158-7

    Article  CAS  Google Scholar 

  • Lietzke DA, Peterson DV (1987) Effects of soil acidification on chemical and mineralogical properties of a limed soil. Soil Sci Soc Am J 51:620–625

    CAS  Google Scholar 

  • Løes AK, Gahoonia TS (2004) Genetic variation in specific root length in Scandinavian wheat and barley accessions. Euphytica 137:243–249. doi:10.1023/B:EUPH.0000041587.02009.2e

    Article  Google Scholar 

  • Luzio W, Casanova M (2006) Avances en el conocimiento de los suelos de Chile. SAG-Universidad de Chile, Chile

    Google Scholar 

  • Mahler RL (1983) Influence of pH on Yield and N and P Nutrition of Alfalfa Grown on an Andic Mission Silt Loam. Agron J 75:731–735

    Article  Google Scholar 

  • Passioura JB (2002) Soil conditions and plant growth. Plant Cell Environ 25:311–318. doi:10.1046/j.0016-8025.2001.00802.x

    Article  PubMed  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597

    CAS  Google Scholar 

  • Prystupa P, Savin R, Slafer GA (2004) Grain number and its relationship with dry matter, N and P in the spikes at heading in response to NxP fertilization in barley. Field Crops Res 90:245–254. doi:10.1016/j.fcr.2004.03.001

    Article  Google Scholar 

  • Rengel Z, Zhang W (2003) Role of dinamics of intracellular calcium in aluminum-toxicity syndrome. New Phytol 159:294–314. doi:10.1046/j.1469-8137.2003.00821.x

    Article  CAS  Google Scholar 

  • Rowell DL (1992) Soil Science. Methods and Applications. Longman Editions UK

  • Ryan PR, Shaff JE, Kochian LV (1992) Aluminum toxicity in roots. Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol 99:1193–1200

    CAS  Google Scholar 

  • Sadras VO, O’Leary GJ, Roget DK (2005) Crop responses to compacted soil: capture and efficiency in the use of water and radiation. Field Crops Res.91:131–148. doi:10.1016/j.fcr.2004.06.011

    Article  Google Scholar 

  • Sadzawka A, Carrasco MA, Grez R, Mora ML (2004) Métodos de análisis recomendados para suelos de chilenos. Comisión de Normalización y Acreditación. Sociedad Chilena de la Ciencia del Suelo

  • Sadzawka A, Carrasco MA, Grez R, Mora ML (2006) Acidificación de los suelos volcánicos de Chile. Available via DIALOG. http://www.inia.cl/platina/investigacion/congresos/docs/2006/2006-01-sadzawka.pdf. Accesed 20 March 2008

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance of aluminum in acid soils — a review. Plant Cell Tissue Organ Cult 75:189–207. doi:10.1023/A:1025843829545

    Article  CAS  Google Scholar 

  • Savin R, Hall AJ, Satorre EH (1994) Testing the root growth subroutine of the CERES-Wheat model for two cultivars of different cycle length. Field Crops Res 38:125–133. doi:10.1016/0378-4290(94)90084-1

    Article  Google Scholar 

  • Sierra J, Noël C, Dufour L, Ozier-Lafontaine H, Welcker C, Desfontaines L (2003) Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant Soil 252:215–226. doi:10.1023/A:1024713127053

    Article  CAS  Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a “genocentric” age? J Exp Bot 56:2777–2782. doi:10.1093/jxb/eri297

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell—wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358. doi:10.1034/j.1399-3054.2001.1120308.x

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Diatloff E, Rengel Z, Mc Gann B (2001) Growth response to subsurface soil acidity of wheat genotypes differing in aluminum tolerance. Plant Soil 236:1–10. doi:10.1023/A:1011930205505

    Article  CAS  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002a) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Google Scholar 

  • Tang C, Rengel Z, Abrecht D, Tennant D (2002b) Aluminium-tolerant wheat uses more water and yields higher than aluminium-sensitive one on a sandy soil with subsurface acidity. Field Crops Res 78:93–103. doi:10.1016/S0378-4290(02)00105-3

    Article  Google Scholar 

  • Tang C, Rengel Z, Diatloff E, Gazey C (2003) Responses of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crops Res 80:235–244. doi:10.1016/S0378-4290(02)00192-2

    Article  Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001. doi:10.2307/2258617

    Article  Google Scholar 

  • von Uexküll HR, Mutert E (2004) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15. doi:10.1007/BF00009558

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Claudio Jobet (INIA) for providing the cultivars used in this study and C. Harrower and R. Mac Donald (UACH) for revising the English usage. We also thank R. Espinoza, M. Díaz, O. Gómez and M. Pereira for technical assistance. SRV held a postgraduate scholarship from CONICYT (Scientific and Technical Research Council of Chile). This study was partially funded by Fundación Andes, Project C-13855 (8) competitive grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana R. Valle.

Additional information

Responsible Editor: Jian Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valle, S.R., Carrasco, J., Pinochet, D. et al. Grain yield, above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions. Plant Soil 318, 299–310 (2009). https://doi.org/10.1007/s11104-008-9841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9841-8

Keywords

Navigation