Plant and Soil

, 318:229 | Cite as

Effect of water table on greenhouse gas emissions from peatland mesocosms

  • Kerry J. Dinsmore
  • Ute M. Skiba
  • Michael F. Billett
  • Robert M. Rees
Regular Article

Abstract

Peatland landscapes typically exhibit large variations in greenhouse gas (GHG) emissions due to microtopographic and vegetation heterogeneity. As many peatland budgets are extrapolated from small-scale chamber measurements it is important to both quantify and understand the processes underlying this spatial variability. Here we carried out a mesocosm study which allowed a comparison to be made between different microtopographic features and vegetation communities, in response to conditions of both static and changing water table. Three mesocosm types (hummocks + Juncus effusus, hummocks + Eriophorum vaginatum, and hollows dominated by moss) were subjected to two water table treatments (0–5 cm and 30–35 cm depth). Measurements were made of soil-atmosphere GHG exchange, GHG concentration within the peat profile and soil water solute concentrations. After 14 weeks the high water table group was drained and the low water table group flooded. Measurement intensity was then increased to examine the immediate response to change in water table position. Mean CO2, CH4 and N2O exchange across all chambers was 39.8 μg m−2 s−1, 54.7 μg m−2 h−1 and −2.9 μg m−2 h−1, respectively. Hence the GHG budget was dominated in this case by CO2 exchange. CO2 and N2O emissions were highest in the low water table treatment group; CH4 emissions were highest in the saturated mesocosms. We observed a strong interaction between mesocosm type and water table for CH4 emissions. In contrast to many previous studies, we found that the presence of aerenchyma-containing vegetation reduced CH4 emissions. A significant pulse in both CH4 and N2O emissions occurred within 1–2 days of switching the water table treatments. This pulsing could potentially lead to significant underestimation of landscape annual GHG budgets when widely spaced chamber measurements are upscaled.

Keywords

Greenhouse gases Water table Vegetation Microtopography Peatland Mesocosm 

References

  1. Aerts R, Ludwig F (1997) Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698 doi:10.1016/S0038-0717(97)00074-6 CrossRefGoogle Scholar
  2. Arah JRM, Stephen KD (1998) A model of the processes leading to methane emission from peatland. Atmos Environ 32:3257–3264 doi:10.1016/S1352-2310(98)00052-1 CrossRefGoogle Scholar
  3. Arenovski AL, Howes BL (1992) Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora. Oecologia 90:316–322 doi:10.1007/BF00317687 CrossRefGoogle Scholar
  4. Bartlett KB, Harriss RC (1993) Review and Assessment of Methane Emissions from Wetlands. Chemosphere 26:261–320 doi:10.1016/0045-6535(93)90427-7 CrossRefGoogle Scholar
  5. Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycles 18:GB1024 doi:10.1029/2003GB002058 CrossRefGoogle Scholar
  6. Blodau C, Moore TR (2003a) Experimental response of peatland carbon dynamics to a water table fluctuation. Aquat Sci 65:47–62 doi:10.1007/s000270300004 Google Scholar
  7. Blodau C, Moore TR (2003b) Micro-scale CO2 and CH4 dynamics in a peat soil during a water table fluctuation and sulphate pulse. Soil Biol Biochem 35:535–547 doi:10.1016/S0038-0717(03)00008-7 CrossRefGoogle Scholar
  8. Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351 doi:10.1023/B:BIOG.0000015788.30164.e2 CrossRefGoogle Scholar
  9. Blodau C, Roulet NT, Heitmann T, Stewart H, Beer J, Lafleur P, Moore TR (2007) Belowground carbon turnover in a temperate ombrotrophic bog. Global Biogeochem Cycles 21:GB1021 doi:10.1029/2005GB002659 CrossRefGoogle Scholar
  10. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183 doi:10.1046/j.1365-3040.1997.d01-142.x CrossRefGoogle Scholar
  11. Chimner RA, Cooper DJ (2003) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–351 doi:10.1016/S0038-0717(02)00284-5 CrossRefGoogle Scholar
  12. Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70:71–92 doi:10.1023/B:BIOG.0000049337.66150.f1 CrossRefGoogle Scholar
  13. Dise NB, Gorham E, Verry ES (1993) Environmental-factors controlling methane emissions from peatlands in Northern Minnesota. J Geophys Res 98:10583–10594 doi:10.1029/93JD00160 CrossRefGoogle Scholar
  14. Dowrick DJ, Freeman C, Lock MA, Reynolds B (2006) Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132:384–390 doi:10.1016/j.geoderma.2005.06.003 CrossRefGoogle Scholar
  15. Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biochem 25:321–326 doi:10.1016/0038-0717(93)90130-4 CrossRefGoogle Scholar
  16. Fechner-Levy EJ, Hemond HF (1996) Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnol Oceanogr 41:1375–1383Google Scholar
  17. Funk DW, Pullman ER, Peterson KM, Crill PM, Billings WD (1994) Influence of water-table on carbon-dioxide, carbon-monoxide, and methane fluxes from taiga bog microcosms. Global Biogeochem Cycles 8:271–278 doi:10.1029/94GB01229 CrossRefGoogle Scholar
  18. Gorham E (1991) Northern peatlands: role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1:182–195 doi:10.2307/1941811 CrossRefGoogle Scholar
  19. Greenup AL, Bradford MA, McNamara NP, Ineson P, Lee JA (2000) The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil 227:265–272 doi:10.1023/A:1026573727311 CrossRefGoogle Scholar
  20. Grünfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate and presence of Phragmites australis. Aquat Bot 64:63–75 doi:10.1016/S0304-3770(99)00010-8 CrossRefGoogle Scholar
  21. Gut A, Blatter A, Fahrni M, Lehmann BE, Neftel A, Staffelbach T (1998) A new membrane tube technique (METT) for continuous gas measurements in soils. Plant Soil 198:79–88 doi:10.1023/A:1004277519234 CrossRefGoogle Scholar
  22. Hargreaves KJ, Fowler D (1998) Quantifying the effects of water table and soil temperature on the emission of methane from peat wetland at the field scale. Atmos Environ 32:3275–3282 doi:10.1016/S1352-2310(98)00082-X CrossRefGoogle Scholar
  23. Huttunen JT, Nykanen H, Turunen J, Martikainen PJ (2003) Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos Environ 37:147–151 doi:10.1016/S1352-2310(02)00771-9 CrossRefGoogle Scholar
  24. IPCC (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change (2007): The Physical Science Basis. Contribution of Working Group 1 to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  25. Knorr K-H, Osterwoud M, Blodau C (2007) Experimental drought changes rates of soil respiration and methanogenesis but not carbon exchange in fen soils. Soil Biol Biochem 40:1781–1791 doi:10.1016/j.soilbio.2008.03.019 CrossRefGoogle Scholar
  26. Kutzbach L, Wagner D, Pfeiffer EM (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69:341–362 doi:10.1023/B:BIOG.0000031053.81520.db CrossRefGoogle Scholar
  27. Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems (N Y, Print) 8:619–629 doi:10.1007/s10021-003-0131-2 CrossRefGoogle Scholar
  28. Laiho (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024CrossRefGoogle Scholar
  29. Lombardi JE, Epp MA, Chanton JP (1997) Investigation of the methyl fluoride technique for etermining rhizospheric methane oxidation. Biogeochemistry 36:153–172 doi:10.1023/A:1005750201264 CrossRefGoogle Scholar
  30. MacDonald JA, Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB (1998) Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmos Environ 32:3219–3227 doi:10.1016/S1352–2310(97)00464–0 CrossRefGoogle Scholar
  31. Minkkinen K, Laine J (2006) Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant Soil 285:289–304 doi:10.1007/s11104-006-9016-4 CrossRefGoogle Scholar
  32. Minkkinen K, Korhonen R, Savolainen I, Laine J (2002) Carbon balance and radiative forcing of Finnish peatlands 1900–2100—the impact of forestry drainage. Glob Change Biol 8:785–799 doi:10.1046/j.1365-2486.2002.00504.x CrossRefGoogle Scholar
  33. Moore TR, Dalva M (1993) The influence of temperature and water table on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664 doi:10.1111/j.1365-2389.1993.tb02330.x CrossRefGoogle Scholar
  34. Moore TR, Roulet NT (1993) Methane Flux—Water-Table Relations in Northern Wetlands. Geophys Res Lett 20:587–590 doi:10.1029/93GL00208 CrossRefGoogle Scholar
  35. Moore TR, Roulet NT, Knowles R (1990) Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem Cycles 4:29–46 doi:10.1029/GB004i001p00029 CrossRefGoogle Scholar
  36. Neill C (1995) Seasonal flooding, nitrogen mineralization and nitrogen utilization in a prairie marsh. Biogeochemistry 30:171–189 doi:10.1007/BF02186412 CrossRefGoogle Scholar
  37. Nungesser MK (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol Modell 165:175–207 doi:10.1016/S0304-3800(03)00067-X CrossRefGoogle Scholar
  38. Öquist M, Sundh I (1998) Effects of a transient oxic period on mineralization of organic matter to CH4 and CO2 in anoxic incubations. Geomicrobiol J 15:325–333CrossRefGoogle Scholar
  39. Regina K, Nykanen H, Silvola J, Martikainen PJ (1996) Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35:401–418 doi:10.1007/BF02183033 CrossRefGoogle Scholar
  40. Regina K, Silvola J, Martikainen PJ (1999) Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Glob Change Biol 5:183–189 doi:10.1046/j.1365-2486.1999.00217.x CrossRefGoogle Scholar
  41. Roulet N, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411 doi:10.1111/j.1365-2486.2006.01292.x CrossRefGoogle Scholar
  42. Roura-Carol M, Freeman C (1999) Methane release from peat soils: effects of Spagnum and Juncus. Soil Biol Biochem 31:323–325 doi:10.1016/S0038-0717(98)00125-4 CrossRefGoogle Scholar
  43. Saarnio S, Wittenmayer L, Merbach W (2004) Rhizospheric exudation of Eriophorum vaginatum L.—potential link to methanogenesis. Plant Soil 267:343–355 doi:10.1007/s11104-005-0140-3 CrossRefGoogle Scholar
  44. Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. J Ecol 84:239–246 doi:10.2307/2261359 CrossRefGoogle Scholar
  45. Shurpali NJ, Verma SB, Clement RJ, Billesbach DP (1993) Seasonal distribution of methane flux in a Minnesota peatland measured by eddy-correlation. J Geophys Res 98:20649–20655 doi:10.1029/93JD02181 CrossRefGoogle Scholar
  46. Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228 doi:10.2307/2261357 CrossRefGoogle Scholar
  47. Strack M, Waller MF, Waddington JM (2006) Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems (N Y, Print) 9:278–287 doi:10.1007/s10021-005-0070-1 CrossRefGoogle Scholar
  48. Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–1192 doi:10.1046/j.1365-2486.2003.00655.x CrossRefGoogle Scholar
  49. Ström L, Mastepanov M, Christensen TR (2005) Species-specific Effects of Vascular Plants on Carbon Turnover and Methane Emissions from Wetlands. Biogeochemistry 75:65–82 doi:10.1007/s10533-004-6124-1 CrossRefGoogle Scholar
  50. Townend J (2002) Practical statistics for environmental and biological scientists. Wiley, ChicesterGoogle Scholar
  51. Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11:311–326Google Scholar
  52. Urban NR, Bayley SE, Eisenreich SJ (1989) Export of dissolved organic carbon and acidity from peatlands. Water Resour Res 25:1619–1628 doi:10.1029/WR025i007p01619 CrossRefGoogle Scholar
  53. Visser EJ, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245 doi:10.1046/j.1365-3040.2000.00628.x CrossRefGoogle Scholar
  54. Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785 doi:10.1029/96JD02014 CrossRefGoogle Scholar
  55. Wein RW (1973) Eriophorum Vaginatum L. J Ecol 61:601–615 doi:10.2307/2259047 CrossRefGoogle Scholar
  56. Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant communty composition. Glob Change Biol 9:141–151 doi:10.1046/j.1365-2486.2003.00571.x CrossRefGoogle Scholar
  57. Whalen SC, Reeburgh WS (2000) Methane oxidation, production, and emission at contrasting sites in a boreal bog. Geomicrobiol J 17:237–251 doi:10.1080/01490450050121198 CrossRefGoogle Scholar
  58. Whiting GJ, Chanton JP (1996) Control of Diurnal pattern of methane emission from aquatic macrophytes by gas transport mechanisms. Aquat Bot 54:237–253 doi:10.1016/0304-3770(96)01048-0 CrossRefGoogle Scholar
  59. Wiebner A, Kuschk P, Stottmeister U (2002) Oxygen release by roots of Typha latifolia and Juncus effusus in laboratory hydroponic systems. Acta Biotechnol 22:209–216 doi:10.1002/1521-3846(200205)22:1/2<209::AID-ABIO209>3.0.CO;2-O CrossRefGoogle Scholar
  60. Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: Effects of temperature, aeration, and organic chemistry of the peat. Geomicrobiol J 14:299–316CrossRefGoogle Scholar
  61. Yu KW, Wang ZP, Chen GX (1997) Nitrous oxide and methane transport through rice plants. Biol Fertil Soils 24:341–343 doi:10.1007/s003740050254 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kerry J. Dinsmore
    • 1
  • Ute M. Skiba
    • 1
  • Michael F. Billett
    • 1
  • Robert M. Rees
    • 2
  1. 1.Centre for Ecology and HydrologyPenicuikUK
  2. 2.Scottish Agricultural College, West Mains RoadEdinburghUK

Personalised recommendations