Skip to main content
Log in

Cover crop residue management for optimizing weed control

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Although residue management seems a key factor in residue-mediated weed suppression, very few studies have systematically compared the influence of different residue management strategies on the establishment of crop and weed species. We evaluated the effect of several methods of pre-treatment and placement of winter rye (Secale cereale L.) and winter oilseed rape (Brassica napus L.) residue on seedling emergence under field conditions. For both species two cultivars, differing in allelochemical content, were used. Residues incorporated in the upper soil layer exerted a large inhibitory effect on the establishment of the relatively early emerging lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) seedlings, whereas the inhibitory effect on the slightly later emerging Stellaria media L. seedlings was variable, and often a stimulatory effect on the very late emerging Chenopodium album L. seedlings was observed. Differences between cover crop cultivars were minor. For winter oilseed rape residue, pre-treatment strongly affected the time-course of residue-mediated effects. Finely ground residues were only inhibitory to seedling establishment during the first two to three weeks, whereas cut residues became inhibitory after this period. For winter rye, residue placement was most important. Residue incorporation gave variable results, whereas placement of winter rye residue on top of the soil inhibited the emergence of all receptor species. In conclusion, the optimal residue management strategy for weed suppression depends both on the cover crop species used and the target weed species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambus P, Jensen ES (1997) Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant Soil 197:261–270. doi:10.1023/A:1004276631914

    Article  CAS  Google Scholar 

  • Angers DA, Recous S (1997) Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189:197–203. doi:10.1023/A:1004207219678

    Article  CAS  Google Scholar 

  • Barnes JP, Putnam AR (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J Chem Ecol 9:1045–1057. doi:10.1007/BF00982210

    Article  Google Scholar 

  • Barnes JP, Putnam AR (1986) Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci 34:384–390

    Google Scholar 

  • Barnes JP, Putnam AR, Burke BA, Aasen AJ (1987) Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 26:1385–1390. doi:10.1016/S0031-9422(00)81818-X

    Article  CAS  Google Scholar 

  • Bellostas N, Sorensen JC, Sorensen H (2007) Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential. J Sci Food Agric 87:1586–1594. doi:10.1002/jsfa.2896

    Article  CAS  Google Scholar 

  • Bending GD, Lincoln SD (1999) Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biol Biochem 31:695–703. doi:10.1016/S0038-0717(98)00163-1

    Article  CAS  Google Scholar 

  • Bialy Z, Oleszek W, Lewis J, Fenwick GR (1990) Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil 129:277–281

    CAS  Google Scholar 

  • Bouwmeester HJ, Karssen CM (1993) Seasonal periodicity in germination of seeds of Chenopodium album L. Ann Bot (Lond) 72:463–473. doi:10.1006/anbo.1993.1133

    Article  Google Scholar 

  • Brown J, Davis JB, Brown DA, Seip L, Gosselin T, Wysocki D, Ott S (2005) Registration of ‘Athena’ winter rapeseed. Crop Sci 45:800–801

    Google Scholar 

  • Brown PD, Morra JM (1996) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil 181:307–316. doi:10.1007/BF00012065

    Article  CAS  Google Scholar 

  • Buchner R (1987) Approach to determination of HPLC response factors for glucosinolates. In: Wathelet JP (ed) Glucosinolates in rapeseed. Martinus Nijhoff Publishers, Dordrecht, pp 50–58

    Google Scholar 

  • Chase WR, Nair MG, Putnam AR (1991) 2,2′-oxo-1,1′-azobenzene: selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species. II. J Chem Ecol 17:9–19. doi:10.1007/BF00994418

    Article  CAS  Google Scholar 

  • Cheng HH (1992) A conceptual framework for assessing allelochemicals in the soil environment. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman & Hall, London, UK

    Google Scholar 

  • Conklin AE, Erich MS, Liebman M, Lambert D, Gallandt ER, Halteman WA (2002) Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant Soil 238:245–256. doi:10.1023/A:1014448612066

    Article  CAS  Google Scholar 

  • Dabney SM, Schreiber JD, Rothrock CS, Johnson JR (1996) Cover crops affect sorghum seedling growth. Agron J 88:961–970

    Google Scholar 

  • Dandurand LM, Mosher RD, Knudsen GR (2000) Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can J Microbiol 46:1051–1057. doi:10.1139/cjm-46-11-1051

    Article  PubMed  CAS  Google Scholar 

  • Dou Z, Fox RH, Toth JD (1995) Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen source. Soil Sci Soc Am J 59:858–864

    CAS  Google Scholar 

  • Eberlein CV, Morra MJ, Guttieri MJ, Brown PD, Brown J (1998) Glucosinolate production by five field-grown Brassica napus cultivars used as green manures. Weed Technol 12:712–718

    CAS  Google Scholar 

  • EC (1990) Oil seeds - determination of glucosinolates by High Perfomance Liquid Chromatography. Official Journal of the European Communities L 170/28: Annex VIII: 03.07.27-34

  • Fomsgaard IS, Mortensen AG, Carlsen SCK (2004) Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals - a review. Chemosphere 54:1025–1038. doi:10.1016/j.chemosphere.2003.09.044

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo RW, Chilton WS (1992) Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J Chem Ecol 18:1683–1691. doi:10.1007/BF02751095

    Article  CAS  Google Scholar 

  • Gardiner JB, Morra MJ, Eberlein CV, Brown PD, Borek V (1999) Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J Agric Food Chem 47:3837–3842. doi:10.1021/jf9812679

    Article  PubMed  CAS  Google Scholar 

  • Haramoto ER, Gallandt ER (2004) Brassica cover cropping for weed management: a review. Renew Agric Food Syst 19:187–198

    Article  Google Scholar 

  • Henson IE (1970) The effects of light, potassium nitrate and temperature on the germination of Chenopodium album L. Weed Res 10:27–39. doi:10.1111/j.1365-3180.1970.tb00920.x

    Article  CAS  Google Scholar 

  • Houba VJG, Temminghoff EJM, Gaikhorst GA, van Vark W (2000) Soil analysis procedures using 0,01 M calciumchloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of brassicas: I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201:71–89. doi:10.1023/A:1004364713152

    CAS  Google Scholar 

  • Kloen H, Daniels L (2000) Onderzoeksagenda Biologische Landbouw en Voeding 2000–2004. Platform Biologica, Utrecht, the Netherlands

    Google Scholar 

  • Kruidhof HM, Bastiaans L Dam NMv, Lotz LAP, Kropff MJ (2008a) Weed suppression by cover crops; can mechanical wounding induce the production of allelochemicals? Ph. D thesis, Wageningen University 59–79

  • Kruidhof HM, Bastiaans L, Kropff MJ (2008b) Ecological weed management by cover cropping: effects on weed growth in autumn and weed establishment in spring. Weed Res (accepted).

  • Liebl RA, Simmons FW, Wax LM, Stoller EW (1992) Effect of rye (Secale cereale) mulch on weed control and soil moisture in soybean (Glycine max). Weed Technol 6:838–846

    Google Scholar 

  • Liebman M, Davis AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:27–47. doi:10.1046/j.1365-3180.2000.00164.x

    Article  Google Scholar 

  • Liebman M, Mohler CL (2001) Weeds and the soil environment. In: Liebman M, Mohler CL, Staver CP (eds) Ecological Management of Agricultural Weeds. Cambridge University Press, Cambridge, pp 210–268

    Google Scholar 

  • Lovett JV, Ryuntyu MY, Liu DL (1989) Allelopathy, chemical communication, and plant defense. J Chem Ecol:15

  • Manici LM, Caputo F, Babini V (2004) Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263:133–142. doi:10.1023/B:PLSO.0000047720.40918.29

    CAS  Google Scholar 

  • Masiunas JB, Weston LA, Weller SC (1995) The impact of rye cover crops on weed populations in a tomato cropping system. Weed Sci 43:318–323

    CAS  Google Scholar 

  • Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34:1683–1690. doi:10.1016/S0038-0717(02)00153-0

    Article  CAS  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265. doi:10.1080/07352680600611543

    Article  CAS  Google Scholar 

  • McNamara NP, Griffiths RI, Tabouret A, Beresford NA, Bailey MJ, Whitely AS (2007) The sensitivity of a forest soil microbial community to acute gamma-irradiation. Appl Soil Ecol 37:1–9. doi:10.1016/j.apsoil.2007.03.011

    Article  Google Scholar 

  • Mwaja VN, Masiunas JB, Weston LA (1995) Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye. J Chem Ecol 21:81–96. doi:10.1007/BF02033664

    Article  CAS  Google Scholar 

  • Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Graminae. Phytochemistry 27:3349–3358. doi:10.1016/0031-9422(88)80731-3

    Article  CAS  Google Scholar 

  • Norsworthy JK, Meehan JT (2005) Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci 53:884–890. doi:10.1614/WS-05-056R.1

    Article  CAS  Google Scholar 

  • Ohno T, Doolan K, Zibilske LM, Liebman M, Gallandt ER, Berube C (2000) Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric Ecosyst Environ 78:187–192. doi:10.1016/S0167-8809(99)00120-6

    Article  Google Scholar 

  • Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Welham SJ, Kane AF, Gilmour AR, Thompson R, Webster R, Tunnicliffe Wilson G (2006) Genstat Release 9 Reference Manual. VSN International, Hertfordshire, UK

    Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37–43

    CAS  Google Scholar 

  • R_Development_Core_Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  PubMed  CAS  Google Scholar 

  • Reberg Horton SC, Burton JD, Danehower DA, Ma GY, Monks DW, Murphy JP, Ranells NN, Williamson JD, Creamer NG (2005) Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J Chem Ecol 31:179–193

    Article  PubMed  CAS  Google Scholar 

  • Rice CP, Adam F, Abdul Baki AA, Teasdale JR (2005) Hydroxamic acid content and toxicity of rye at selected growth stages. J Chem Ecol 31:1887–1905

    Article  PubMed  CAS  Google Scholar 

  • Ritz C, Streibig JC, Cedergreen N (2005) Statistical assessment of dose-response curves with free software. Collection of examples.

  • Sarrantonio M, Gallandt E (2003) The role of cover crops in North American cropping systems. J Crop Prod 8:53–74

    Article  Google Scholar 

  • Siemens DH, Garner SH, Mitchell Olds T, Callaway RM (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83:505–517

    Google Scholar 

  • Stevenson FJ (1986) Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. Wiley-Interscience, New York

    Google Scholar 

  • Teasdale JR, Mohler CL (1993) Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron J 85:673–680

    Article  Google Scholar 

  • Teasdale JR, Pillai P (2005) Contribution of ammonium to stimulation of smooth pigweed (Amaranthus hybridus L.) germination by extracts of hairy vetch (Vicia villosa Roth) residue. Weed Biol Manag 5:19–25

    Article  Google Scholar 

  • van Dam NM, Witjes L, Svatos A (2004) Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol 161:801–810

    Article  Google Scholar 

  • Warton B, Matthiessen JN, Shackleton MA (2001) Glucosinolate content and isothiocyanate evolution - two measures of the biofumigation potential of plants. J Agric Food Chem 49:5244–5250

    Article  PubMed  CAS  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860–866

    Google Scholar 

  • Xuan TD, Tawata S, Khanh TD, Chung IM (2005) Decomposition of allelopathic plants in soil. J Agron Crop Sci 191:162–171

    Google Scholar 

Download references

Acknowledgements

We thank Ans Hofman (Crop and Weed Ecology, Wageningen University) and the Unifarm staff for assisting in the experimental work. We extend our gratitude to Nicole van Dam and Ciska Raaijmakers (Netherlands Institute of Ecology (NIOO-KNAW)) for carrying out the glucosinolate analyses and thank Henny Halm (Biological Farming Systems, Wageningen University) for conducting the nitrogen measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Marjolein Kruidhof.

Additional information

Responsible Editor: Elizabeth (Liz) A. Stockdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruidhof, H.M., Bastiaans, L. & Kropff, M.J. Cover crop residue management for optimizing weed control. Plant Soil 318, 169–184 (2009). https://doi.org/10.1007/s11104-008-9827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9827-6

Keywords

Navigation