Plant and Soil

, 312:185 | Cite as

Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.)

  • Sebastian Bott
  • Tsehaye Tesfamariam
  • Hande Candan
  • Ismail Cakmak
  • Volker Römheld
  • Günter NeumannEmail author
Regular Article


This investigation demonstrated potential detrimental side effects of glyphosate on plant growth and micronutrient (Mn, Zn) status of a glyphosate-resistant (GR) soybean variety (Glycine max cv. Valiosa), which were found to be highly dependent on the selected growth conditions. In hydroponic experiments with sufficient Mn supply [0.5 μM], the GR cv. Valiosa produced similar plant biomass, root length and number of lateral roots in the control treatment without glyphosate as compared to its non-GR parental line cv. Conquista. However, this was associated with 50% lower Mn shoot concentrations in cv. Conquista, suggesting a higher Mn demand of the transgenic cv. Valiosa under the selected growth conditions. Glyphosate application significantly inhibited root biomass production, root elongation, and lateral root formation of the GR line, associated with a 50% reduction of Mn shoot concentrations. Interestingly, no comparable effects were detectable at low Mn supply [0.1 μM]. This may indicate Mn-dependent differences in the intracellular transformation of glyphosate to the toxic metabolite aminomethylphosphonic acid (AMPA) in the two isolines. In soil culture experiments conducted on a calcareous loess sub-soil of a Luvisol (pH 7.6) and a highly weathered Arenosol (pH 4.5), shoot biomass production and Zn leaf concentrations of the GR-variety were affected by glyphosate applications on the Arenosol but not on the calcareous Loess sub-soil. Analysis of micronutrient levels in high and low molecular weight (LMW) fractions (80% ethanol extracts) of young leaves revealed no indications for internal immobilization of micronutrients (Mn, Zn, Fe) by excessive complexation with glyphosate in the LMW phase.


Glyphosate Glyphosate-resistant soybean (Glycine max L.) Micronutrient acquisition Micronutrient utilisation 



aminomethylphosphonic acid




genetically modified




low molecular weight


high molecular weight


  1. Arregui MC, Lenardo’n A, Sanchez D, Maitre MI, Scotta R, Enrique S (2003) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manage Sci 60:163–166CrossRefGoogle Scholar
  2. Bailey WA, Poston DH, Wilson HP, Hines TE (2002) Glyphosate interactions with manganese. Weed Technol 16:792–799 doi: 10.1614/0890-037X(2002)016[0792:GIWM]2.0.CO;2 CrossRefGoogle Scholar
  3. Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308 doi: 10.1002/(SICI)1526-4998(200004)56:4<299::AID-PS144>3.0.CO;2-K CrossRefGoogle Scholar
  4. Bennett WF (1993) Nutrient deficiencies and toxicities in crop plants. APS Press, St PaulGoogle Scholar
  5. Bernards ML, Thelen KD, Penner D (2005a) Glyphosate efficacy is antagonized by manganese. Weed Technol 19:27–34 doi: 10.1614/WT-03-193R2 CrossRefGoogle Scholar
  6. Bernards ML, Thelen KD, Muthukumaran RB, Penner D, McCracken JL (2005b) Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci 53:787–794 doi: 10.1614/WS-05-043R.1 CrossRefGoogle Scholar
  7. Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205 doi: 10.1046/j.1469-8137.2000.00630.x CrossRefGoogle Scholar
  8. Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658 doi: 10.2134/jeq2005.0378 PubMedCrossRefGoogle Scholar
  9. de María N, de Felipe MR, Fernández-Pascual M (2005) Alterations induced by glyphosate on lupin photosynthetic apparatus and nodule ultrastructure and some oxygen diffusion related proteins. Plant Physiol Biochem 43:985–996 doi: 10.1016/j.plaphy.2005.09.001 PubMedCrossRefGoogle Scholar
  10. Duke SO (1988) Glyphosate. In: Kearney PC, Kaufman DD (eds) Herbicides: chemistry, degradation, and mode of action, vol. 3. Dekker, New York, pp 1–70Google Scholar
  11. Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 51:340–344 doi: 10.1021/jf025908i PubMedCrossRefGoogle Scholar
  12. Eker S, Levent O, Yazici A, Erenoglu B, Römheld V, Cakmak I (2006) Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.). Plants J Agric Food Chem 54:10019–10025 doi: 10.1021/jf0625196 CrossRefGoogle Scholar
  13. Feng PCC, Pratley JE, Bohn JA (1999) Resistance to glyphosate in Lolium rigidum. II. Uptake, translocation and metabolism. Weed Sci 47:412–415Google Scholar
  14. Gauvrit C, Gaudry JC, Lucotte T, Cabanne F (2001) Biological evidence for a 1:1 Ca2+: glyphosate association in deposit residuals of the leaf surface of barley. Weed Res 41:433–455 doi: 10.1046/j.1365-3180.2001.00248.x CrossRefGoogle Scholar
  15. Geiger DR, Kapitan SW, Tucci MA (1986) Glyphosate inhibits photosynthesis and allocation of carbon to starch in sugar beet leaves. Plant Physiol 82:468–472PubMedCrossRefGoogle Scholar
  16. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxilogical risk assessment for Roundup® herbicide. Rev Environ Contam Toxicol 167:35–120Google Scholar
  17. Gordon B (2007) Manganese nutrition of glyphosate-resistant and conventional soybeans. Better Crops 91/4:12–13Google Scholar
  18. Hernandez A, Garcia-Plazaola JI, Becerril JM (1999) Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merr.). J Agric Food Chem 47:2920–2925 doi: 10.1021/jf981052z PubMedCrossRefGoogle Scholar
  19. Hetherington PR, Reynolds TL, Marshall G, Kirkwood RC (1999) The absorption, translocation and distribution of the herbicide glyphosate in maize expressing the CP-4 transgene. J Exp Bot 50:1567–1576 doi: 10.1093/jexbot/50.339.1567 CrossRefGoogle Scholar
  20. Huber DM (2006) Strategies to ameliorate glyphosate immobilization of manganese and its impact on the rhizosphere and disease. In: Lorenz N, Dick R (eds) Proceedings of the glyphosate potassium symposium 2006. Ohio State University, AG Spectrum, DeWitt, IowaGoogle Scholar
  21. Huber DM, McCay-Buys TS (1993) A multiple component analysis of the take-all disease of cereals. Plant Dis 77:437–447Google Scholar
  22. Jolley VD, Hansen NC, Shiffler AK (2004) Nutritional and management related interactions with iron-deficiency stress response mechanisms. Soil Sci Plant Nutr 50:973–981Google Scholar
  23. Komossa D, Gennity I, Sandermann H (1992) Plant metabolism of herbicides with C–P bonds: glyphosate. Pestic Biochem Physiol 43:85–94 doi: 10.1016/0048-3575(92)90022-R CrossRefGoogle Scholar
  24. Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and susceptible soybean (Glycine max) and canola (Brassica napus). Dose response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545 doi: 10.1021/jf063568l PubMedCrossRefGoogle Scholar
  25. Neumann G, Kohls S, Landsberg E, Stock-Oliveira Souza K, Yamada T, Römheld V (2006) Relevance of glyphosate transfer to non-target plants via the rhizosphere. J Plant Dis Protect 20:963–969Google Scholar
  26. Ozturk L, Yaciki A, Eker S, Gokmen O, Römheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron-deficient sunflower roots. New Phytol 177:899–906 doi: 10.1111/j.1469-8137.2007.02340.x PubMedCrossRefGoogle Scholar
  27. Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143 doi: 10.1021/jf049605v PubMedCrossRefGoogle Scholar
  28. Reuter DJ, Robinson JB (1997) Plant analysis—an interpretation manual. CSRIO, CollingwoodGoogle Scholar
  29. Schönherr J, Schreiber L (2004) Interactions of calcium ions with weakly acidic ingredients slow cuticular penetration: a case study with glyphosate. J Agric Food Chem 51:6546–6551 doi: 10.1021/jf049500s CrossRefGoogle Scholar
  30. Service RF (2007) A growing threat down on the farm. Science 316(5828):1114–1117 doi: 10.1126/science.316.5828.1114 PubMedCrossRefGoogle Scholar
  31. Sprankle P, Meggitt WF, Penner D (1975) Adsorption, action and translocation of glyphosate. Weed Sci 23:235–240Google Scholar
  32. VDLUFA (2004) Bestimmung von Magnesium, Natrium und den Spurennährstoffen Kupfer, Mangan, Zink, und Bor im Calciumchlorid/DTPA-Auszug. VDLUFA-Methodenbuch I, A 6.4.1.,VDLUFA-Verlag, Darmstadt, GermanyGoogle Scholar
  33. Wagner R, Kogan M, Parada AM (2003) Phytotoxic activity of root absorbed glyphosate in corn seedlings (Zea mays L.). Weed Biol Manag 3:228–232 doi: 10.1046/j.1444-6162.2003.00110.x CrossRefGoogle Scholar
  34. Wang YJ, Zhou DM, Sun RJ, Jia DA, Zhu HW, Wang SQ (2008) Zinc adsorption on goethite as affected by glyphosate. J Hazard Mater 151:179–184 doi: 10.1016/j.jhazmat.2007.05.060 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sebastian Bott
    • 1
  • Tsehaye Tesfamariam
    • 1
  • Hande Candan
    • 2
  • Ismail Cakmak
    • 2
  • Volker Römheld
    • 1
  • Günter Neumann
    • 1
    Email author
  1. 1.Institut für Pflanzenernährung (330)Universität HohenheimStuttgartGermany
  2. 2.Sabanci UniversityIstanbulTurkey

Personalised recommendations