Skip to main content
Log in

Symbiotic phenotype of a membrane-bound glucose dehydrogenase mutant of Sinorhizobium meliloti

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We have previously reported detection of significant pyrroloquinoline quinone-linked glucose dehydrogenase activity in Sinorhizobium meliloti cells isolated from alfalfa (Medicago sativa L.) nodules. In this work, we report the expression of the gcd gene (SMc00110) during root nodule development and characterize the symbiotic phenotype of S. meliloti gcd mutant RmH580. Using a S. meliloti strain carrying a gcd–lacZ transcriptional fusion, gcd expression was detected from very early stages of plant–bacteria interactions, at the rhizosphere level, and during further stages of nodule development. Alfalfa plants inoculated with RmH580 showed a delay in nodule emergence and a reduced ability for nodulation at various inoculum dosages. RmH580 was also deficient in its competitive ability; in coinoculation experiments a mutant:wild-type inoculum ratio higher than 100:1 was necessary to obtain an equal ratio of nodule occupancy. These results indicate that PQQ-linked glucose dehydrogenase is required by S. meliloti for optimal nodulation efficiency and competitiveness on alfalfa roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Takimoto K, Adachi O (1986) Purification and characterization of the quinoprotein D-glucose dehydrogenase apoenzyme from Escherichia coli. Agric Biol Chem 50:49–57

    CAS  Google Scholar 

  • Barsch A, Patschkowski T, Niehaus K (2004) Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography–mass spectrometry. Funct Integr Genomics 4:219–230

    Article  PubMed  CAS  Google Scholar 

  • Bernardelli CE, Luna MF, Galar ML, Boiardi JL (2001) Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic rhizobia. Curr Microbiol 42:310–315

    Article  PubMed  CAS  Google Scholar 

  • Bhuvaneswari TV, Turgeon BG, Bauer WD (1980) Early events in the infection of soybean (Glycine max L. Merr) by Rhizobium japonicum. I. Localization of infectible root cells. Plant Physiol 66:1027–1031

    PubMed  Google Scholar 

  • Boiardi JL, Galar ML, Neijssel OM (1996) PQQ-linked extracellular glucose oxidation and chemotaxis towards this cofactor in rhizobia. FEMS Microbiol Lett 140:179–184

    Article  CAS  Google Scholar 

  • Caetano-Anollés G, Bauer WD (1988) Enhanced nodule initiation on alfalfa by wild-type Rhizobium meliloti co-inoculated with nod gene mutants and other bacteria. Planta 174:385–395

    Article  Google Scholar 

  • Caetano-Anollés G, Favelukes G, Bauer WD (1990) Optimization of surface sterilization for legume seed. Crop Sci 30:708–712

    Google Scholar 

  • Cozier GE, Salleh RA, Anthony C (1999) Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochem J 340:639–647

    Article  PubMed  CAS  Google Scholar 

  • Dymov IS, Meek D, Steven B, Driscoll B (2004) Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes. Mol Plant Microbe Interact 17:1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Evans C, Herbert D, Tempest DW (1970) The continuous cultivation of micro-organisms. 2. Construction of a Chemostat. Methods Microbiol 2:277–327

    Article  CAS  Google Scholar 

  • Fahraeus G (1957) The infection of clover roots hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    PubMed  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380

    Article  PubMed  CAS  Google Scholar 

  • Fry J, Wood M, Poole PS (2001) Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14:1016–1025

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672

    Article  PubMed  CAS  Google Scholar 

  • Gosselin I, Wattraint O, Riboul D, Barbotin J, Portais J (2001) A deeper investigation on carbohydrate cycling in Sinorhizobium meliloti. FEBS Lett 499:45–49

    Article  PubMed  CAS  Google Scholar 

  • Hommes R, Van Hell B, Postma P, Neijssel OM, Tempest D (1985) The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch Microbiol 143:163–168

    Article  PubMed  CAS  Google Scholar 

  • Jiang G, Krishnan AH, Kim YM, Wacek TJ, Krishnan HB (2001) A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183:2595–2604

    Article  PubMed  CAS  Google Scholar 

  • Krishnan H, Kim W, Sun-Hyung J, Kim K, Jiang G (2003) Citrate synthase mutants of Sinorhizobium fredii USDA257 form ineffective nodules with aberrant ultrastructure. Appl Environ Microbiol 69:3561–3568

    Article  PubMed  CAS  Google Scholar 

  • Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroids. CRC Crit Rev Plant Sci 22:37–78

    Article  CAS  Google Scholar 

  • Luna MF, Bernardelli CE, Mignone CF, Boiardi JL (2002) Energy generation by extracellular aldose oxidation in N2-fixing Gluconacetobacter diazotrophicus. Appl Environ Microbiol 68:2054–2057

    Article  PubMed  CAS  Google Scholar 

  • McDermott T, Kahn M (1992) Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene. J Bacteriol 174:4790–4797

    PubMed  CAS  Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    PubMed  CAS  Google Scholar 

  • Oresnik IJ, Pacarynuk LA, O’Brien SAP, Yost CK, Hynes MF (1998) Plasmid-encoded catabolic loci in Rhizobium leguminosarum bv. trifolii. Evidence for a plant-inducible rhamnose utilisation locus involved in competition for nodulation. Mol Plant Microbe Interact 11:1175–1185

    Article  CAS  Google Scholar 

  • Pellock B, Cheng H, Walker G (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  PubMed  CAS  Google Scholar 

  • Poole P, Allaway D (2000) Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 43:117–163

    Article  PubMed  CAS  Google Scholar 

  • Portais J, Tavernier P, Besson I, Courtois J, Courtois B, Barbotin J (1997) Mechanism of gluconate synthesis in Rhizobium meliloti by using in vivo NMR. FEBS Lett 412:485–489

    Article  PubMed  CAS  Google Scholar 

  • Romanov V, Hernández-Lucas I, Martínez-Romero E (1994) Carbon metabolism enzymes of Rhizobium tropici cultures and bacteroids. Appl Environ Microbiol 60(7):2339–2342

    PubMed  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Spaink HP, Okker R, Wijffelman C, Pees E, Lugtenberg B (1987) Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid PRLIJI. Plant Mol Biol 9:27–39

    Article  CAS  Google Scholar 

  • Streeter J (1991) Transport and metabolism of carbon and nitrogen in legume nodules. Adv Bot Res 18:129–187

    Article  CAS  Google Scholar 

  • Streeter J (1995) Recent developments in carbon transport and metabolism in symbiotic systems. Symbiosis 19:175–176

    CAS  Google Scholar 

  • Teeri T, Lehväslaiho H, Franck M, Uotila J, Heino P, Palva E et al (1989) Gene fusion to lacZ reveal new expression patterns of chimeric plants. EMBO J 8:343–350

    PubMed  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell, Oxford

    Google Scholar 

  • Walshaw D, Wilkinson M, Mundy M, Smith M, Poole P (1997) Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology 143:2209–2221

    Article  PubMed  CAS  Google Scholar 

  • White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. J. Streeter for critically reviewing the manuscript and Prof. T. Finan for providing the strains. J.L. Boiardi is member of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Boiardi.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the linked to the electronic supplementary material.

Table A

Shoot dry weight and fresh nodule mass of plants inoculated with S. meliloti RCR2011, 1021 and their derived gcd mutants (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardelli, C.E., Luna, M.F., Galar, M.L. et al. Symbiotic phenotype of a membrane-bound glucose dehydrogenase mutant of Sinorhizobium meliloti . Plant Soil 313, 217–225 (2008). https://doi.org/10.1007/s11104-008-9694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9694-1

Keywords

Navigation