Skip to main content
Log in

Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Salinity influences plant growth, seed yield and seed quality even of halophytic crops such as Chenopodium quinoa. Plant growth, total seed yield, number of seeds, fresh weight and dry weight of seeds, were all significantly reduced in the presence of salinity. Only at high salinity did the content of proteins (as well as total N) increase significantly in the seeds whereas the content of total carbohydrates (as well as total C) decrease. Aside from that the capacity for germination was diminished by a reduced seed size and a disproportionate reduction of the volume of the perisperm. However, the reduced capacity seemed to be compensated by an accelerated germination owing to high Na and Cl concentrations leading to a low water potential in the walls of the plant ovary. At high salinity the passage of NaCl to the seed interior was hindered by the seed cover. There was an obvious gradient between potentially toxic (Na and Cl) and essentially needed elements (K, Mg, Ca, P and S) across the seed coat of salt treated plants and also a significant change of the distribution of elements in the embryo. The results indicate a highly protected seed interior leading to a high salinity resistance of quinoa seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility in seed set of rice under salinity stress. J Agron Crop Sci 187:25–32

    Article  Google Scholar 

  • Ando H, Chen YC, Tang HJ, Shimizu M, Watanabe K, Mitsunaga T (2002) Food components in fractions of quinoa seed. Food Sci Technol Res 8:80–84

    Article  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Boscaiu M, Estrelles M, Soriano P, Vicente O (2005) Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia. Biol Plant 49:141–143

    Article  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantification of microgram of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brinegar C, Goundan S (1993) Isolation and characterization of chenopodin the 11 S seed storage protein of quinoa (Chenopodium quinoa). J Agric Food Chem 4:182–185

    Article  Google Scholar 

  • Cano EA, Bolarin MC, Perez-Alfocea F, Caro M (1991) Effect of NaCl priming on increased salt tolerance in tomato. J Hortic Sci 66:621–628

    CAS  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na and K to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  • Castillo RO (1995) Plant genetic resource in the Andes: impact, conservation, and management. Crop Sci 35:355–360

    Article  Google Scholar 

  • Cayuela E, Perez-Alfocea F, Caro M, Bolarin MC (1996) Priming seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol Plant 96:231–236

    Article  CAS  Google Scholar 

  • Choukr-Allah R (1996) The potential of halophytes in the development and rehabilitation of arid and semi-arid zones. In: Choukr-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 3–13

    Google Scholar 

  • Debez A, Ben Hamed K, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cacile maritima. Plant Soil 262:179–189

    Article  CAS  Google Scholar 

  • Delesalle VA, Mazer SJ (1996) Nutrient levels and salinity affect gender and floral traits in the autogamous Spergularia marina. Int J Plant Sci 157:621–631

    Article  Google Scholar 

  • Desai BB, Kotecha PM, Salunkhe DK (1997) Seeds handbook. Marcel Dekker, New York

    Google Scholar 

  • Dubey RS (1994) Protein synthesis by plants under stressful conditions. In: Passarakli M (ed) Handbook of plant and crop stress. MarcelDekker, New York, pp 277–299

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: Principles and Perspectives. Wiley, New York

    Google Scholar 

  • Fisher RA (1970) Statistical methods for research workers. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Flowers TJ (2004) Genetics of plant mineral nutrition. Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2001) Effect of various abiotic stresses on the growth. Soluble sugars and water relations of Sorghum seedlings grown in light and darkness. Bulg J Plant Physiol 27(1–2):72–84

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51:463–499

    Article  CAS  Google Scholar 

  • Hevia F, Wilckens R, Berti M, Badilla R (2001) Starch characteristics and protein content of quinoa (Chenopodium quinoa W.) grown under different nitrogen levels in Chillan. Agro sur 29(1):42–50

    Google Scholar 

  • Hu YC, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Jacobsen SE (2003) The worldwide potential of quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Article  Google Scholar 

  • Jacobsen S-E (2007) Quinoa’s world potential. In: Ochatt S, Jain SM (eds) Breeding of neglected and under-utilized crops, spices and herbs. Science Publishers, Enfield, pp 109–122

    Google Scholar 

  • Jacobsen SE, Quispe H, Mujica A (2001) Quinoa: an alternative crop for saline soils in the Andes. In: Scientist and Farmer-Partners in Research for the 21st Century. CIP Program Report 1999–2000, pp 403–408

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Christiansen JL, Bravo LA, Corcuera LJ, Mujica A (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139

    Article  Google Scholar 

  • Kermode AR (1990) Regulatory mechanisms involved in the transition from seed development to germination. Crit Rev Plant Sci 9:155–195

    Article  CAS  Google Scholar 

  • Kermode AR, Bewley JD (1985) The role of maturation drying in the transition from seed development to germination. I. Acquisition of dessication-tolerance and germinability during development of Ricinus communis L.seeds. J Exp Bot 36:1906–1915

    Article  Google Scholar 

  • Khan MA, Abdullah Z (2003) Salinity-sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environ Exp Bot 49(2):145–157

    Article  CAS  Google Scholar 

  • Khatun S, Flowers TJ (1995) Effect of salinity on seed set in rice. Plant Cell Environ 18:61–67

    Article  Google Scholar 

  • Konishi Y, Takezoe R, Murase J (1998) Energy dispersive X-ray microanalysis of element distribution in amaranth seed. Biosci Biotechnol Biochem 62:2288–2290

    Article  CAS  Google Scholar 

  • Konishi Y, Hirano S, Tsuboi H, Wada M (2004) Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 68:231–234

    Article  PubMed  CAS  Google Scholar 

  • Koyro H-W (2000) Effect of high NaCl-salinity on plant growth, leaf morphology, and ion composition in leaf tissues of Beta vulgaris ssp. maritima. J Appl Bot Food Qual 74:67–73

    CAS  Google Scholar 

  • Koyro H-W (2003) Study of potential cash crop halophytes in a quick check system. Tasks Veg Sci 38:5–17 ISBN-4020-1202-0

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (1999) Salt and drought stress effects on metabolic regulation in maize. In: Pessarakli M (ed) Handbook of plant and crop stress. 2nd edn. Marcel Dekker, New York, pp 843–878

    Google Scholar 

  • Koziol MJ (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Compos Anal 5:35–68

    Article  CAS  Google Scholar 

  • Labidi N, Lachaal M, Soltani A, Grignon C, Hajji M (2004) Variability of the effects of salinity on reproductive capacity of Arabidopsis thaliana. J Plant Nutr 27:1561–1573

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses: water, radiation, salt, and other stresses. Academic, New York, pp 365–488

    Google Scholar 

  • Lintschinger J, Fuchs N, Moser H, Jäger R, Hlebeina T, Markolin G, Gössler W (1997) Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Food Hum Nutr (Formerly Qualitas Plantarum) 50:223–237

    Article  CAS  Google Scholar 

  • Mahar AR, Hollington PA, Virk DS, Witcombe JR (2003) Selection for early heading and salt-tolerance in bread wheat. Cereal Res Commun 31:81–88

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutrition status on shoot–root partitioning of photo-assimilates and cycling of mineral nutrients. J Exp Bot 49:1255–1263

    Google Scholar 

  • Mujica A, Jacobsen SE, Ezquierdo J, Marathee JP (2001) Resultados de la Prueba Americana y Europes de la Quinua, FAO, UNA-Puno, p 51

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Munns R, Husain R, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Ng SC, Anderson AK (2005) Lipid oxidation in Quinoa (Chenopodium quinoa) determined through accelerated aging. Electron J Environ Agric Food Chem 4:1010–1020

    CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress Environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Nrisingha D, Mandal RK (1993) Characterization of 2S albumin with nutritional balanced amino acid composition from the seeds of Chenopodium album and its antigenic homology with seed protein of some Chenopodium, Chenopodiaceae and Amaranthaceae species. Biochem Mol Biol Int 30:149–157

    Google Scholar 

  • Passam HC, Kakouriotis D (1994) The effect of osmoconditioning on the germination, emergence and early plant growth of cucumber under saline conditions. Sci Hortic 57:233–240

    Article  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 3–20

    Google Scholar 

  • Poustini K, Siosemardeh A (2004) Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res 85:125–133

    Article  Google Scholar 

  • Prado FE, Boero C, Gallardo M, Gonzalez JA (2000) Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa (Willd.) seeds. Bot Bull Acad Sin 41:27–34

    CAS  Google Scholar 

  • Prakash D, Nath P, Pal M (1993) Composition, variation of nutritional contents in leaves, seed protein, fat and fatty acid profile of Chenopodium species. J Sci Food Agric 62:203–205

    Article  CAS  Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488

    Article  Google Scholar 

  • Puthur JT, Saradhi PP (2004) Developing embryos of Sesbania sesban have unique potential to photosynthesize under high osmotic environment. J Plant Physiol 161:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Ranhotra GS, Gelroth JA, Glaser BK, Lorens KJ, Johnson DL (1993) Composition and nutritional quality of quinoa. Cereal Chem 70:303–305

    CAS  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Ruales J, Nair BM (1992) Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd) seeds. Plant Food Hum Nutr 42:1–12

    Article  CAS  Google Scholar 

  • Ruales J, Nair BM (1993) Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa Willd) seeds. Food Chem 48:131–136

    Article  CAS  Google Scholar 

  • Sild E, Pleijel H, Sellden G (2002) Elevated ozone (O3) alters carbohydrate metabolism during grain filling in wheat (Triticum aestivum L.). Agric Ecosyst Environ 92:71–81

    Article  CAS  Google Scholar 

  • Sivritepe HO, Dourado AM (1995) The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds. Ann Bot 75:165–171

    Article  Google Scholar 

  • Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic 97:229–237

    Article  CAS  Google Scholar 

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267

    Article  PubMed  CAS  Google Scholar 

  • Sultana N, Ikeda T, Itoh R (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 42:211–220

    Article  CAS  Google Scholar 

  • Tanji KK (2002) Salinity in the soil environment. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 21–51

    Google Scholar 

  • Thompson RD, Hueros G, Becker H, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160(5):775–783

    Article  PubMed  CAS  Google Scholar 

  • Thorne JT (1985) Phloem unloading of C and N assimilates in developing seeds. Ann Rev Plant Physiol 36:317–343

    CAS  Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607

    Article  Google Scholar 

  • Varriano Marston E, DeFrancisco A (1984) Ultrastructure of quinoa fruit. Food Microstruct. 3:165–173

    Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolated plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Ibuki A, Chen YC, Kawamura Y, Mitsunaga T (2003) Composition of quinoa protein fractions. J Jpn Soc Food Sci Technol 50(11):546–549

    CAS  Google Scholar 

  • Weber H, Heim U, Golombek S, Borisjuk Land Wobus U (1998) Assimilate uptake and the regulation of seed development. Seed Sci Res 9:331–345

    Google Scholar 

  • Weschke W, Panutz R, Sauer N, Wang Q, Neubohn W, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21:455–467

    Article  PubMed  CAS  Google Scholar 

  • Wild A (1999) Pflanzenphysiologische Versuche in der Schule. Quelle and Meyer Publisher, pp 413

  • Wilson HD (1990) Quinua and relatives (Chenopodium sect. Chenopodium subsect., Cellulata). Econ Bot 44:92–110

    Google Scholar 

  • Wilson C, Read JJ, Abo-Kassem E (2002) Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. J Plant Nutr 25:2689–2704

    Article  CAS  Google Scholar 

  • Wood SG, Lawson LD, Fairbanks DJ, Robinson LR, Andersen WR (1993) Seed lipid content and fatty acid composition of three quinoa cultivars. J Food Compos Anal 6:41–44

    Article  CAS  Google Scholar 

  • Wyn Jones G, Gorham J (2002) Intra- and inter-cellular compartmentation of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, The Netherlands, pp 159–180

    Google Scholar 

  • Xue Z-Y, Zhi D-Y, Xue GP, Zhang H, Zhao X-Y, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    Article  CAS  Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech 19:765–768

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Dr. Samy A. Habib, Ain Shams University, Faculty of Agriculture, Dept. of Agricultural Botany, Cairo, Egypt, Prof. Helmut Lieth, Institute of Environmental Systems Research (USF), University of Osnabrück, Germany and Dr. Nicole Geissler, Institute for Plant Ecology, University of Giessen, Germany for critically reading the manuscript. This work has been supported by a grant from the German Academic Exchange Service (DAAD, A/03/32801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Koyro.

Additional information

Responsible Editor: Rana E. Munns

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyro, HW., Eisa, S.S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302, 79–90 (2008). https://doi.org/10.1007/s11104-007-9457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9457-4

Keywords

Navigation