Plant and Soil

, Volume 301, Issue 1–2, pp 1–15 | Cite as

Monovalent cation transporters; establishing a link between bioinformatics and physiology

Marschner Review


Monovalent cations such as potassium (K+) and ammonium \({\left( {{\text{NH}}^{ + }_{4} } \right)}\) are essential to plant growth and development whereas others, such as sodium (Na+), can greatly inhibit plant growth. To understand and potentially manipulate the roles of these monovalent cations, a detailed knowledge is required about how they move in, out, and throughout plants, processes that are mediated by membrane transporters. The application of genomics and post-genomics methods has provided an overall idea of the genes that encode membrane transporters and in combination with functional analyses we now have a more detailed picture of which proteins are involved in particular biological functions. This review will give an overview of the gene families that are involved in monovalent cation transport, their members and their broad functional classification. Subsequently, an update will be provided on the identity and the roles of specific isoforms with regard to important physiological processes such as the uptake, long distance transport and compartmentation of K+ and Na+ and the uptake from the soil of \({ {{\text{NH}}^{ + }_{4} } }\).


Cation transport Membrane transport Potassium Sodium Nutrient Salt stress 


  1. Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145PubMedCrossRefGoogle Scholar
  2. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefGoogle Scholar
  3. Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576PubMedCrossRefGoogle Scholar
  4. Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitiveresponse, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379PubMedCrossRefGoogle Scholar
  5. Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626PubMedCrossRefGoogle Scholar
  6. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedCrossRefGoogle Scholar
  7. Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168PubMedCrossRefGoogle Scholar
  8. Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39:834–846PubMedCrossRefGoogle Scholar
  9. Clough SJ, Fengler KA, Yu I, Lippok B, Smith RK, Bent A (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328PubMedCrossRefGoogle Scholar
  10. Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292PubMedCrossRefGoogle Scholar
  11. Davenport R (2002) Glutamate receptors in plants. Annals Bot 90:549–557CrossRefGoogle Scholar
  12. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818PubMedCrossRefGoogle Scholar
  13. Demidchik V, Maathuis FJM (2007) Physiological roles of non-selective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404PubMedCrossRefGoogle Scholar
  14. Elgavish A, Elgavish GA (1985) In vitro ethanol effects on the transport properties of isolated renal brush-border membrane vesicles. J Membr Biol 88:123–130PubMedCrossRefGoogle Scholar
  15. Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131PubMedCrossRefGoogle Scholar
  16. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159PubMedCrossRefGoogle Scholar
  17. Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801PubMedCrossRefGoogle Scholar
  18. Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere M, Thibaud J, Sentenac H (1998) Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655PubMedCrossRefGoogle Scholar
  19. Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation- induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114PubMedCrossRefGoogle Scholar
  20. Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana Cyclic Nucleotide Gated Channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800PubMedCrossRefGoogle Scholar
  21. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two pore channel TPK1 gene encodes the vacuolar K+ (VK) conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731Google Scholar
  22. Hall D, Evans AR, Newbury HJ, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57:1201–1210PubMedCrossRefGoogle Scholar
  23. Haro R, Banuelos MA, Senn MAE, Barrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506PubMedCrossRefGoogle Scholar
  24. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921PubMedCrossRefGoogle Scholar
  25. Huang SB, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedCrossRefGoogle Scholar
  26. Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieu V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Prots 6:394–412CrossRefGoogle Scholar
  27. Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84PubMedCrossRefGoogle Scholar
  28. Lagarde D, Basset M, Lepetit M, Conegero G, Gaymard F, Astruc S, Grignon C (1996) Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J 9:195–203PubMedCrossRefGoogle Scholar
  29. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149PubMedCrossRefGoogle Scholar
  30. Li XL, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E-coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E-coli. Function Plant Biol 32:643–653CrossRefGoogle Scholar
  31. Li LG, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630PubMedCrossRefGoogle Scholar
  32. Loque D, Lalonde S, Looger LL, von Wiren N, Frommer WB (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446:195–198PubMedCrossRefGoogle Scholar
  33. Ludewig U, von Wiren N, Frommer WB (2002) Uniport of \({\text{NH}}^{ + }_{4} \) by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 277:13548–13555PubMedCrossRefGoogle Scholar
  34. Ludewig U, Wilken S, Wu BH, Jost W, Obrdlik P, El Bakkoury M, Marini AM, Andre B, Hamacher T, Boles E, von Wiren N, Frommer WB (2003) Homo- and hetero-oligomerization of ammonium transporter-1 \({\text{NH}}^{ + }_{4} \) uniporters. J Biol Chem 278:45603–45610PubMedCrossRefGoogle Scholar
  35. Maathuis FJM, Sanders D (1994) Mechanism of high affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276PubMedCrossRefGoogle Scholar
  36. Maathuis FJM, Sanders D (1995) Contrasting roles in ion transport of two K+ channel types in root cells of Arabidopsis thaliana. Planta 197:456–464PubMedCrossRefGoogle Scholar
  37. Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96:158–168CrossRefGoogle Scholar
  38. Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernandez JA, Walker NA (1996) The physiological relevance of Na+-coupled K+-transport. Plant Physiol 112:1609–1616PubMedGoogle Scholar
  39. Marschner H (1995) Mineral nutrition in higher plants. In Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  40. Marschner H, Kirkby EA, Engels C (1997) Importance of cycling and recycling of mineral nutrients within plants for growth and development. Bot Act 110:265–273Google Scholar
  41. Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci USA 96:7581–7586PubMedCrossRefGoogle Scholar
  42. Maser P, Thomine S, Schroeder JI, Hirschi K, Ward JM, Sze H, Amtmann A, Maathuis FJM, Talke I, Sanders D, Persans MW, Salt DE, Kim SA, Guerinot ML, Gribskov M (2001) Phylogenetic relationships within cation-transporter families of Arabidopsis thaliana. Plant Physiol 126:1646–1667PubMedCrossRefGoogle Scholar
  43. Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52:541–549PubMedCrossRefGoogle Scholar
  44. Ottow EA, Polle A, Brosche M, Kangasjarvi J, Dibrov P, Zorb C, Teichmann T (2005) Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:75–88Google Scholar
  45. Padmanaban S, Chanroj S, Kwak JM, Li X, Ward JM, Sze H (2007) Participation of the endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol 144:82–93PubMedCrossRefGoogle Scholar
  46. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199PubMedCrossRefGoogle Scholar
  47. Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408PubMedCrossRefGoogle Scholar
  48. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Maser P, Pantoja O, Rodriguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Very AA, Zhu JK, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374PubMedCrossRefGoogle Scholar
  49. Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084PubMedCrossRefGoogle Scholar
  50. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37:1141–1146PubMedCrossRefGoogle Scholar
  51. Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth inArabidopsis root hairs. Plant Cell 13:139–151PubMedCrossRefGoogle Scholar
  52. Roberts SK, Tester M (1995) Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant J 8:811–825CrossRefGoogle Scholar
  53. Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160Google Scholar
  54. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedCrossRefGoogle Scholar
  55. Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511PubMedCrossRefGoogle Scholar
  56. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665PubMedCrossRefGoogle Scholar
  57. Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+ /H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477PubMedCrossRefGoogle Scholar
  58. Sze H, Padmanaban S, Cellier F, Honys D, Cheng NH, Bock KW, Conejero G, Li XY, Twell D, Ward JM, Hirschi KD (2004) Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol 136:2532–2547PubMedCrossRefGoogle Scholar
  59. Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293PubMedCrossRefGoogle Scholar
  60. Tyerman SD, Whitehead LF, Day DA (1995) A channel-like transporter for \({\text{NH}}^{ + }_{4} \) on the symbiotic interface of N2-fixing plants. Nature 378:629–632CrossRefGoogle Scholar
  61. Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175PubMedCrossRefGoogle Scholar
  62. Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Ann Rev Plant Biol 54:575–603CrossRefGoogle Scholar
  63. Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306PubMedCrossRefGoogle Scholar
  64. Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514PubMedCrossRefGoogle Scholar
  65. Wegner LH, deBoer AH (1999) Activation kinetics of the K+ outward rectifying conductance KORC in xylem parenchyma cells from barley roots. J Membr Biol 170:103–119PubMedCrossRefGoogle Scholar
  66. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+ /H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  67. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539PubMedCrossRefGoogle Scholar
  68. Yoshida K, Kawachi M, Mori M, Maeshima M, Kondo M, Nishimura M, Kondo T (2005) The involvement of tonoplast proton pumps and Na+ (K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol 46:407–415PubMedCrossRefGoogle Scholar
  69. Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis Cyclic Nucleotide-Gated Ion Channel11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763PubMedCrossRefGoogle Scholar
  70. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotech 19:765–768CrossRefGoogle Scholar
  71. Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Biology, Area 9University of YorkYorkUK

Personalised recommendations