Skip to main content
Log in

Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) seedlings stressed with CdCl2 (0.5 mM or 50 μM) showed typical Cd toxicity (leaf chlorosis, decrease in chlorophyll content, or increase in H2O2 and malondialdehyde contents). Rice seedlings pretreated with heat shock at 45°C (HS) for 2 or 3 h were protected against subsequent Cd stress. Rice seedlings pretreated with HS had similar Cd concentration in leaves caused by CdCl2 as those non-HS. The content of H2O2 increased in leaves 1 h after HS exposure. However, APX and GR activities were higher in HS-treated leaves than their respective control, and it occurred after 2 h of HS treatment. Pretreatment of rice seedlings with H2O2 under non-HS conditions resulted in an increase in APX, GR, and CAT activities and protected rice seedlings from subsequent Cd stress. HS-induced H2O2 production and protection against subsequent Cd stress can be counteracted by imidazole, an inhibitor of NADPH oxidase complex. Results of the present study suggest that early accumulation of H2O2 during HS signals the increase in APX and GR activities, which in turn prevents rice seedlings from Cd-caused oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

ASC:

Ascorbate

CAT:

Catalase

DAB:

3, 3-Diaminobenzidine

DW:

Dry weight

GR:

Glutathione reductase

HS:

Heat shock

IMD:

Imidazole

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Alscher RG, Donahue JL, Cramer CK (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros J-VR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:114–1122

    Google Scholar 

  • Badiani M, Paolacci AR, Fusari A, D’Ovidio R, Scandalios JG, Porceddu E, Sermanni G (1997) Non-optimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. II. Short-term acclimation. J Plant Physiol 151:409–421

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen SL, Kao CH (1995a) Prior temperature exposure affects subsequent Cd-induced ethylene production in rice leaves. Plant Sci 104:135–138

    Article  CAS  Google Scholar 

  • Chen SL, Kao CH (1995b) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regul 16:249–252

    Article  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig RF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Chien HF, Kao CH (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci 156:111–115

    Article  PubMed  CAS  Google Scholar 

  • Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:2229–2236

    Article  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Doke N (1997) The oxidative burst: roles in signal transduction and plant stress. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 785–813

    Google Scholar 

  • Foster JG, Hess JL (1980) Response of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associate mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freeman JL, Persan MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thalspi nickel hyperaccumulators. Plant Cell 16:2129–2176

    Article  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gong M, Chen B, Li X-G, Guo L-H (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol 158:1125–1130

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri MH (1982) Glycolate metabolism of these submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  • Kang H-M, Saltveit ME (2001) Activity of enzyme antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant 1123:548556

    Google Scholar 

  • Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can J Bot 65:729–735

    CAS  Google Scholar 

  • Kochhar S, Kochhar VK (2005) Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedldings. Plant Sci 168:921–929

    Article  CAS  Google Scholar 

  • Kocsy G, Von Ballmoss P, Suter M, Rüegseggger A, Galli U, Szalai G, Galiba G, Brunold C (2000) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211:528–536

    Article  PubMed  CAS  Google Scholar 

  • Kraus TE, Fleccher RA (1994) Paclobutrazol protects wheat seedlings from heat and paraquat injury: is detoxification of active oxgen involved? Plant Cell Physiol 35:45–52

    CAS  Google Scholar 

  • Kuo MC, Kao CH (2004) Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings. Bot Bull Acad Sin 45:291–299

    CAS  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer Ch, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    Article  CAS  Google Scholar 

  • Morita S, Kaminaka H, Masumura T, Tanaka C (1999) Induction of rice cytosolic ascorbte peroxidase mRNA by oxidative stress: involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol 40:417–422

    CAS  Google Scholar 

  • Nakano Y, Asda K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:807–880

    Google Scholar 

  • Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367

    Article  CAS  Google Scholar 

  • Nieto-Sotelo J, Ho T-HD (1986) Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol 82:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Noctror G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  Google Scholar 

  • Olmos EO, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  PubMed  Google Scholar 

  • Orzech KA, Burke JJ (1988) Heat shock and the protection against metal toxicity in wheat leaves. Plant Cell Environ 11:711–714

    Article  CAS  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Capparini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154:536–541

    Article  PubMed  CAS  Google Scholar 

  • Pei X, Murata Y, Benning G, Thomine S, Klusener B, Allen G, Grill E, Schroeder J (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Piqueras A, Olmos E, Martínez-Solano JR, Hellín E (1999) Cd induced oxidative burst in tobacco BY-2 cell: time-course, subcellular location and antioxidant response. Free Radic Res 31:S25–S31

    Article  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994a) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Stewart CR (1994b) Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627

    PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Zablza A, Rodriguez-Serrano M, Gómez M, del Río LA, Sandalio LM (2003) Antioxidative response to cadmium in pea roots. Free Radic Res 37:44

    Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumultion of \(O^{ - }_{2} \) and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sato Y, Murakami T, Funatsuki H, Matsube S, Saruyama H, Tanida M (2001) Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J Exp Bot 52:145–151

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shaw BP (1995) Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 37:587–596

    Article  CAS  Google Scholar 

  • Susuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    Article  Google Scholar 

  • Tsai Y-C, Hong C-Y, Liu L-F, Kao CH (2004) Relative importance of Na+ and Cl in NaCl-induced antioxidant sytems in roots of rice seedlings. Physiol Plant 122:86–94

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:5115–5523

    Article  Google Scholar 

  • Van Breusegem F, Vranová E, Dat JF, Inzé (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:83–294

    Article  CAS  Google Scholar 

  • Wintermans JFGM, De Mots A (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochim Biophys Acta 109:448–453

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  PubMed  CAS  Google Scholar 

  • Yu C-W, Murphy TM, Sung W-W, Lin C-H (2002) H2O2 treatment induced glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol 29:1081–1087

    Article  CAS  Google Scholar 

  • Yu C-W, Murphy TM, Lin C-H (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant the National Science Council of the Republic of China (NSC 95-2313-B-002-046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Huei Kao.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, Y.T., Kao, C.H. Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300, 137–147 (2007). https://doi.org/10.1007/s11104-007-9396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9396-0

Keywords

Navigation