Abstract
Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing to sustainable plant production, ecosystem restoration, and soil carbon sequestration and hence mitigation of global climate change. As both biochar and mycorrhizal associations are subject to management, understanding and exploiting interactions between them could be advantageous. Here we focus on biochar effects on mycorrhizal associations. After reviewing the experimental evidence for such effects, we critically examine hypotheses pertaining to four mechanisms by which biochar could influence mycorrhizal abundance and/or functioning. These mechanisms are (in decreasing order of currently available evidence supporting them): (a) alteration of soil physico-chemical properties; (b) indirect effects on mycorrhizae through effects on other soil microbes; (c) plant–fungus signaling interference and detoxification of allelochemicals on biochar; and (d) provision of refugia from fungal grazers. We provide a roadmap for research aimed at testing these mechanistic hypotheses.
This is a preview of subscription content,
to check access.
Similar content being viewed by others
References
Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827
Angelini J, Castro S, Fabra A (2003) Alterations in root colonization and nodC gene induction in the peanut-rhizobia interaction under acidic conditions. Plant Physiol Biochem 41:289–294
Antal MJ Jr, Grønli M (2003) The art, science, and technology of charcoal production. Indust Engin Chem Res 42:1619–1640
Aspray TJ, Eirian Jones E, Whipps JM, Bending GD (2006) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris–Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25–33
Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266
Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochem 33:1093–1109
Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microb 55:2320–2325
Cohn J, Bradley D, Stacey G (1998) Legume nodule organogenesis. Trends Plant Sci 3:105–110
Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30:2558–2579
DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453
Drew EA, Murray RS, Smith SE (2006) Functional diversity of external hyphae of AM fungi: ability to colonize new hosts is influenced by fungal species, distance and soil conditions. Appl Soil Ecol 32:350–365
Duclos JL, Fortin JA (1983) Effect of glucose and active charcoal on in-vitro synthesis of ericoid mycorrhiza with Vaccinium spp. New Phytol 94:95–102
Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91
Escudero V, Mendoza RE (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299
Ezawa T, Yamamoto K, Yoshida S (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci Plant Nutr 48:897–900
Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus. New Phytol 153:81–89
Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210
Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48
Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular–arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255
Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Phil Trans R Soc B 362:187–196
Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fert Soils 35:219–230
Glaser B, Woods W (2004) Towards an understanding of amazon dark earths. In: B Glaser, W Woods (eds)Amazon dark earths: explorations in space and time. Springer, Berlin, pp 1–8
Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93
Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42
Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 135:335–344
Harvey AE, Jurgensen MF, Larsen MJ (1976) Comparative distribution of ectomycorrhizae in a mature Douglas-fir/Larch forest soil in western Montana. Forest Sci 22:350–358
Harvey AE, Jurgensen MF, Larsen MJ (1978) Seasonal distribution in a mature Douglas-fir/Larch forest soil in western Montana. Forest Sci 22:203–208
Harvey AE, Larsen MF, Jurgensen MF (1979) Comparative distribution of ectomycorrhizae in soils of three western Montana forest habitat types. Forest Sci 25:350–358
Herrmann S, Oelmuller R, Buscot F (2004) Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak micro-cuttings and Piloderma croceum: influence on plant development and photosynthesis. J Plant Physiol 161:509–517
Hildebrandt U, Janetta, K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microb 68:1919–1924
Hildebrandt U, Ouziad F, Marner F-J, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267
Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Ac 71:3432–3445
Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678
Ishii T, Kadoya K (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular–arbuscular mycorrhizal development. J Jpn Soc Hortic Sci 63:529–535
Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042
Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae?. Ecol Appl 3:749–757
Kawamoto K, Ishimaru K, Imamura Y (2005) Reactivity of wood charcoal with ozone. Wood Sci 51:66–72
Keech O, Carcaillet C, Nilsson MC (2005) Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291–300
Klironomos JN, Kendrick WB (1996) Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fert Soils 21:43–52
Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118
Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biol Fert Soils 42:358–361
Krull ES, Skjemstad JO, Graetz D, Grice K, Dunning W, Cook G, Parr JF (2003) 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org Geochem 34:1337–1352
Kwon S, Pignatello JJ (2005) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Env Sci Technol 39:7932–7939
Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22
Lehmann J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5:381–387
Lehmann J, Da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357
Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems – a review. Mitig Adapt Strat Global Change 11:403–427
Lucas RE, Davis JF (1961) Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci 92:177–182
Major J, Steiner C, Ditommaso A, Falcão NP, Lehmann J (2005) Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: compost, fertilizer, manure and charcoal applications. Weed Biol Manag 5:69–76
Marris E (2006) Black is the new green. Nature 442:624–626
Matsubara Y-I, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374
Miller RM, Miller SP, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162
Mori S, Marjenah (1994) Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jap Forestry Soc 76:462–464
Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90
Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular–arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microb 57:434–439
Oguntunde PG, Fosu M, Ajayi AE, Van De Giesen ND (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295–299
Pan MJ, Van Staden J (1998) The use of charcoal in in-vitro culture – A review. Plant Growth Regul 26:155–163
Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol 172:35–46
Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242
Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420
Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263
Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microb 72:3550–3557
Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754
Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53
Rondon M, Lehmann J, Ramírez J, Hurtado MP (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fert Soils 43:699–708
Saito M (1990) Charcoal as a micro habitat for VA mycorrhizal fungi, and its practical application. Agric Ecosyst Environ 29:341–344
Samonin VV, Elikova EE (2004) A study of the adsorption of bacterial cells on porous materials. Microbiology 73:810–816
Schiermeier Q (2006) Putting the carbon back. Nature 442:620–623
Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications and current challenges. Global Biogeochem Cy 14:777–793
Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515
Skjemstad JO, Janik LJ, Taylor JA (1998) Non-living soil organic matter: What do we know about it? Aust. J Exp Agr 38:667–680
Swift RS (2001) Sequestration of carbon by soil. Soil Sci 166:858–871
Swift MJ, Heal OW, Anderson JW (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley
Topoliantz S, Ponge J-F, Ballof S (2005) Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol Fert Soils 41:15–21
Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515
Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr 18:81–115
Vaario LM, Tanaka M, Ide Y, Gill WM, Suzuki K (1999) In vitro ectomycorrhiza formation between Abies firma and Pisolithus tinctorius. Mycorrhiza 9:177–183
Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095
Van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72
Wallstedt A, Coughlan A, Munson AD, Nilsson MC, Margolis HA (2002) Mechanisms of interaction between Kalmia angustifolia cover and Picea mariana seedlings. Can J For Res 32:2022–2031
Xie Z-P, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525
Yamato M, Okimori Y, Wibowo IF, Anshiori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495
Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci 8:407–409
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Hans Lambers.
Rights and permissions
About this article
Cite this article
Warnock, D.D., Lehmann, J., Kuyper, T.W. et al. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300, 9–20 (2007). https://doi.org/10.1007/s11104-007-9391-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11104-007-9391-5