Plant and Soil

, 299:65 | Cite as

Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities

  • Lingli Liu
  • John S. King
  • Christian P. Giardina
Research Article


Atmospheric changes could strongly influence how terrestrial ecosystems function by altering nutrient cycling. We examined how the dynamics of nutrient release from leaf litter responded to two important atmospheric changes: rising atmospheric CO2 and tropospheric O3. We evaluated the independent and combined effects of these gases on foliar litter nutrient dynamics in aspen (Populus tremuloides Michx) and birch (Betula papyrifera Marsh)/aspen communities at the Aspen FACE Project in Rhinelander, WI. Naturally senesced leaf litter was incubated in litter bags in the field for 735 days. Decomposing litter was sampled six times during incubation and was analyzed for carbon, and both macro (N, P, K, S, Ca, and Mg) and micro (Mn, B, Zn and Cu) nutrient concentrations. Elevated CO2 significantly decreased the initial litter concentrations of N (−10.7%) and B (−14.4%), and increased the concentrations of K (+23.7%) and P (+19.7%), with no change in the other elements. Elevated O3 significantly decreased the initial litter concentrations of P (−11.2%), S (−8.1%), Ca (−12.1%), and Zn (−19.5%), with no change in the other elements. Pairing concentration data with litterfall data, we estimated that elevated CO2 significantly increased the fluxes to soil of all nutrients: N (+12.5%), P (+61.0%), K (+67.1%), S (+28.0%), and Mg (+40.7%), Ca (+44.0%), Cu (+38.9%), Mn (+62.8%), and Zn (+33.1%). Elevated O3 had the opposite effect: N (−22.4%), P (−25.4%), K (−27.2%), S (−23.6%), Ca (−27.6%), Mg (−21.7%), B (−16.2%), Cu (−20.8%), and Zn (−31.6%). The relative release rates of the nine elements during the incubation was: K ≥ P ≥ mass ≥ Mg ≥ B ≥ Ca ≥ S ≥ N ≥ Mn ≥ Cu ≥ Zn. Atmospheric changes had little effect on nutrient release rates, except for decreasing Ca and B release under elevated CO2 and decreasing N and Ca release under elevated O3. We conclude that elevated CO2 and elevated O3 will alter nutrient cycling more through effects on litter production, rather than litter nutrient concentrations or release rates.


Aspen FACE Atmospheric change Litter bag Macro and micro nutrient Nutrient cycling 


  1. Akin DE, Kimball BA, Windham WR, Pinter PJ Jr, Wall GW, Garcia RL, LaMorte WH, Morrison WH III (1995) Effect of free-air CO2 enrichment (FACE) on forage quality of wheat. Anim Feed Sci Technol 53:29–43CrossRefGoogle Scholar
  2. Barnes JD, Pfirrmann T (1992) The influence of CO2 and O3, singly and in combination, on gas exchange, growth and nutrient status of radish (Raphanus sativus L.). New Phytol 121:403–412CrossRefGoogle Scholar
  3. Booker FL, Maier CA (2001) Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiol 21:609–616PubMedGoogle Scholar
  4. Booker FL, Prior SA, Torbert HA III, Fiscus EL, Pursley WA, Hu S (2005) Decomposition of soybean grown under elevated concentrations of CO2 and O3. Glob Chang Biol 11:685–698CrossRefGoogle Scholar
  5. Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–323CrossRefGoogle Scholar
  6. Chapin FS III, Matson PA, Mooney HA (2002) Principles of. terrestrial ecosystem ecology. Springer, New York, p 436Google Scholar
  7. Chapman JA, King JS, Pregitzer KS, Zak DR (2005) Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots. Tree Physiol 25:1501–1510PubMedGoogle Scholar
  8. Cotrufo MF, Raschi A, Lanini M, Ineson P (1999) Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem. Funct Ecol 13:343–351CrossRefGoogle Scholar
  9. Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sober J, Host GE, Zak DR, Hendrey GR, Pregitzer KS, Karnosky DF (2000) Forest atmosphere carbon transfer and storage (FACTS-II) the aspen Free-air CO2 and O3 Enrichment (FACE) project: an overview. General Technical Report NC-214. U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, MN, p 68Google Scholar
  10. Fangmeier A, Grüters U, Högy P, Vermehren B, Jäger HJ (1997) Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat. II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ Pollut 96:43–59PubMedCrossRefGoogle Scholar
  11. Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25PubMedCrossRefGoogle Scholar
  12. Frehner M, Luscher A, Hebeisen T, Zanetti S, Schubiger F, Scalet M (1997) Effects of elevated partial pressure of carbon dioxide and season of the year on forage quality and cyanide concentration of Trifolium repens L. from a FACE experiment. Acta Oecol 18:297–304CrossRefGoogle Scholar
  13. Giardina CP, Coleman MD, Binkley D, Hancock JE, King JS, Lilleskov EA, Loya WM, Pregitzer KS, Ryan MG, Trettin CC (2005) The response of belowground carbon allocation in forests to global change. In: Binkley D, Menyailo O (eds) The impacts of global climate change on plant–soil interactions. NATO Science Series, Kluwer, Dordrecht, pp 119–154Google Scholar
  14. Heagle AS, Millar J, Sherrill DE, Rawlings JO (1993) Effects of ozone and carbon dioxide mixtures on two clones of white clover. New Phytol 123:751–762CrossRefGoogle Scholar
  15. Holmes WE, Zak DR, Pregtizer KS, King JS (2006) Elevated CO2 and O3 alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems 9:1354–1363CrossRefGoogle Scholar
  16. Huluka G, Hileman DR, Biswas PK, Lewin KF, Nagy J, Hendrey GR (1994) Effects of elevated CO2 and water stress on mineral concentration of cotton. Agric For Meteorol 70:141–152CrossRefGoogle Scholar
  17. IPCC (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  18. Johnson DW (2006) Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87:64–75PubMedCrossRefGoogle Scholar
  19. Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis, 5th edn. Prentice Hall, Saddle River, NJ, p 767Google Scholar
  20. Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE (2004) Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69:379–403CrossRefGoogle Scholar
  21. Kaakinen S, Kostiainen K, Ek F, Saranpaa P, Kubiske ME, Sober J, Karnosky DF, Vapaavuori E (2004) Stem wood properties in Populus tremuloides clones, Betula papyrifera and Acer saccharum after three years of treatments to elevated carbon dioxide and ozone. Glob Chang Biol 10:1513–1525CrossRefGoogle Scholar
  22. Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendry GR, Host GE, King JS, Kopper BJ, Krueger EL, Kubiske ME, Lindroth RL, Mattson WJ, McDonald EP, Noormets A, Oksanen E, Parsens WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur R, Sober A, Sober J, Jones WS, Anttonen S, Vaapavouri E, Mankovska B, Heilman W, Isebrands JG (2003) Tropospheric O−3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol 17:289–304CrossRefGoogle Scholar
  23. Kasurinen A, Riikonen J, Oksanen E, Vapaavuori E, Holopainen T (2006) Chemical composition and decomposition of silver birch leaf litter produced under elevated CO2 and O3. Plant Soil 282:261–280CrossRefGoogle Scholar
  24. Kasurinen A, Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Nuutinen V, Holopainen T, Holopainen JK (2007) Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil 292:25–43CrossRefGoogle Scholar
  25. King JS, Thomas RB, Strain BR (1997) Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen. Plant Soil 195:107–119CrossRefGoogle Scholar
  26. King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237–250CrossRefGoogle Scholar
  27. King JS, Pregitzer KS, Zak DR, Holmes WE, Schmidt K (2005a) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia 146:318–328PubMedCrossRefGoogle Scholar
  28. King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005b) Tropospheric O−3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–635PubMedCrossRefGoogle Scholar
  29. Kopper BJ, Lindroth RL, Nordheim EV (2002) CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera Marsh.) phytochemistry and white-marked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environ Entomol 30:1119–1126CrossRefGoogle Scholar
  30. Koukoura Z, Mamolos AP, Kalburtji KL (2003) Decomposition of dominant plant species litter in a semi-arid grassland. Applied Soil Ecol 23:13–23CrossRefGoogle Scholar
  31. Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems – a review. Plant Soil 256:41–66CrossRefGoogle Scholar
  32. Kubiske ME, Godbold DL (2001) Influence of CO2 on the growth and function of roots and root systems. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza GE, Innes JL (eds) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI, Wallingford, Oxon, UK, pp 147–191Google Scholar
  33. Laskowski R, Niklinska M, Maryanski M (1995) The dynamics of chemical elements in forest litter. Ecology 76:1393–1406CrossRefGoogle Scholar
  34. Lindroth RL, Kopper BJ, Parsons WFJ, Bockheim JG, Karnosky DF, Hendrey GR, Pregitzer KS, Isebrands JG, Sober J (2001) Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ Pollut 115:395–404PubMedCrossRefGoogle Scholar
  35. Liu LL, King JS, Giardina CP (2005) Effects of elevated atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch ecosystems. Tree Physiol 15:1511–1522Google Scholar
  36. Loranger GI, Pregitzer KS, King JS (2004) Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biol Biochem 36:1521–1524CrossRefGoogle Scholar
  37. Luo YQ, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Mcnurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739CrossRefGoogle Scholar
  38. Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63PubMedCrossRefGoogle Scholar
  39. Mattson WJ, Julkunen-Tiitto R, Herms DA (2005) CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition of the growth-differentiation balance models? Oikos 111:337–347CrossRefGoogle Scholar
  40. McLaughlin SB, Wimmer R (1999) Calcium physiology and terrestrial ecosystem processes. New Phytol 142:73–417CrossRefGoogle Scholar
  41. Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystem 9:46–62CrossRefGoogle Scholar
  42. Moraes RM, Bulbovas P, Furlan CM, Domingos M, Meirelles ST, Delitti W, Sanz MJ (2004) Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation. Ecotoxicol Environ Saf 63:306–312CrossRefGoogle Scholar
  43. Norby RJ, Iversen CM (2006) Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87:5–14PubMedCrossRefGoogle Scholar
  44. Norby RJ, Cotrufo MF, Ineson P, O’eill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165CrossRefGoogle Scholar
  45. Nowak RS, Smith SD, Ellsworth DS (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280CrossRefGoogle Scholar
  46. Ogner G (1993) No general effect of ozone on foliar nutrient concentration in mature scions of grafted Picea abies trees. Environ Pollut 82:197–200PubMedCrossRefGoogle Scholar
  47. Parsons WFJ, Lindroth RL, Bockheim JG (2004) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Glob Chang Biol 10:1666–1677CrossRefGoogle Scholar
  48. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, 340 ppGoogle Scholar
  49. Penuelas J, Idso SB, Ribas A, Kimball BA (1997) Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves. New Phytol 135:439–444CrossRefGoogle Scholar
  50. Penuelas J, Filella I, Tognetti R (2001) Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Glob Chang Biol 7:291–301CrossRefGoogle Scholar
  51. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 6914:403–407CrossRefGoogle Scholar
  52. Pfirrmann T, Barnes JD, Steiner K, Schramel P, Busch U, Kuchenhoff H, Payer HD (1996) Effects of elevated CO2, O3, and K deficiency on Norway spruce (Picea abies): nutrient supply, content and leaching. New Phytol 134:267–278CrossRefGoogle Scholar
  53. Sah RN, Miller RO (1992) Spontaneous reaction for acid dissolution of biological tissues in closed vessels. Anal Chem 64:230–233PubMedCrossRefGoogle Scholar
  54. Sallas L, Kainulainen P, Utriainen J, Holopainen T, Holopainen JK (2001) The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine (Pinus sylvestris L.) seedlings. Glob Chang Biol 7:303–311CrossRefGoogle Scholar
  55. Schädler M, Brandl R (2005) Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biol Biochem 3:329–337CrossRefGoogle Scholar
  56. Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon ER (ed) CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. AAAS Selected Symposium 84. Westview, Boulder, CO, pp 177–222Google Scholar
  57. Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer, Sunderland, p 690Google Scholar
  58. Tian G, Kang BT, Brussaard L (1992) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions – decomposition and nutrient release. Soil Biol Biochem 24:1051–1060CrossRefGoogle Scholar
  59. Walin G, Karlsson PE, Sellden G, Ottosson S, Medin EL, Pleijel H, Skarby L (2002) Impact of four years exposure to different levels of ozone, phosphorus and drought on chlorophyll, mineral nutrients, and stem volume of Norway spruce, Picea abies. Physiol Plant 114:192–206CrossRefGoogle Scholar
  60. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513PubMedCrossRefGoogle Scholar
  61. Woo SY, Hinckley TM (2005) The effects of ozone on growth and stomatal response in the F-2 generation of hybrid poplar (Populus trichocarpa × Populus deltoides). Biol Plant 49:395–404CrossRefGoogle Scholar
  62. Wustman BA, Oksanen E, Isebrands JG, Pregitzer KS, Hendrey GR, Sober J, Karnosky DF, Podila GK (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut 115:473–481PubMedCrossRefGoogle Scholar
  63. Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117CrossRefGoogle Scholar
  64. Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots, and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Lingli Liu
    • 1
  • John S. King
    • 1
  • Christian P. Giardina
    • 2
  1. 1.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA
  2. 2.Institute of Pacific Islands ForestryUSDA Forest Service – PSW Research StationHiloUSA

Personalised recommendations