Skip to main content

Advertisement

Log in

Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The production of auxins, such as indole-3-acetic acid (IAA), by rhizobacteria has been associated with plant growth promotion, especially root initiation and elongation. Six indole-producing bacteria isolated from the rhizosphere of legumes grown in Saskatchewan soils and identified as Pantoea agglomerans spp. were examined for their ability to promote the growth of canola, lentil and pea under gnotobiotic conditions and for tryptophan (Trp)-dependent IAA production. Five of the isolates enhanced root length, root weight or shoot weight by 15–37% in at least one of the plant species, but isolates 3–117 and 5–51 were most consistent in enhancing plant growth across the three species. Indole concentrations in the rhizosphere of plants grown under gnotobiotic conditions increased in the presence of the rhizosphere isolates and when Trp was added 3 days prior to plant harvest. Isolates 3–117, 5–51 and 5–105 were most effective in increasing rhizosphere indole concentrations. Colony hybridization confirmed that all of the isolates possessed the ipdC gene which codes for a key enzyme in the Trp-dependent IAA synthetic pathway. The activity of amino acid aminotransferase (AAT), catalyzing the first step in the Trp-dependent synthetic pathway, was examined in the presence of Trp and other aromatic amino acids. All of the isolates accumulated Trp internally and released different amounts of IAA. The production of IAA from the isolates was greatest in the presence of Trp, ranging from 2.78 to 16.34 μg mg protein−1 in the presence of 250 μg of Trp ml−1. The specific activity of AAT was correlated with the concentration of IAA produced in the presence of Trp but not when tyrosine (Tyr), phenylalanine (Phe) or aspartate (Asp) was used as a sole nitrogen source. Isolate 3–117, which produced significant concentrations of IAA in the presence and absence of Trp, was able to use aromatic amino acids as sole sources of nitrogen and was most consistent in enhancing the growth of canola, lentil and pea may have potential for development as a plant growth-promoting inoculant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

IAA:

indole-3-acetic acid

Trp:

tryptophan

Tyr:

tyrosine

Phe:

phenylalanine

Asp:

aspartate

2-OG:

2-oxoglutarate

AAT:

aromatic amino acid aminotransferase

HPLC:

high-performance liquid chromatography

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:34–151

    Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    PubMed  CAS  Google Scholar 

  • Carreno-Lopez R, Campos-Reales N, Elmerich C, Baca BE (2000) Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet 264:521–530

    Article  PubMed  CAS  Google Scholar 

  • Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Gene Dev 9:2131–2142

    Article  PubMed  CAS  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1969) Data for biochemical research. Clarendon, Oxford

    Google Scholar 

  • De Francesco R, Zanetti G, Barbieri P, Galli E (1985) Auxin production by Azospirillum brasilense under different culture conditions. In: Klingmuller W (ed) Azospirillum III: genetics, physiology, ecology. Proceedings of the 3rd Bayreuth Azospirillum Workshop. Springer, Berlin Heidelberg New York, pp 103–115

    Google Scholar 

  • Diamondstone TI (1966) Assay of tyrosine transaminase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal Biochem 16:395–401

    Article  CAS  Google Scholar 

  • Dixon HBF, Severin ES (1968) Dissociation of the prosthetic group of aspartate amino transferase. Biochem J 110:18P–19P

    PubMed  CAS  Google Scholar 

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms that utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed  CAS  Google Scholar 

  • Ewing WH, Fife MA (1972) Enterobacter agglomerans (Beijerinck) comb. nov. (the herbicola-lathyri bacteria). Int J Syst Bacteriol 22:4–11

    Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Y Okon (ed) Azospirillum/plant associations. CRC, Boca Raton, FL, pp 77–86

    Google Scholar 

  • Fessehaie A, De Boer SH, Lévesque CA (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathol 93:262–269

    Article  CAS  Google Scholar 

  • Gaitonde MK, Gwyneth E, Hartmann M (1979) Determination of tryptophan by manually operated and autoanalyzer methods based on the formation of norharman. Anal Biochem 92:338–344

    Article  PubMed  CAS  Google Scholar 

  • Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Granner DK, Tomkins GM (1970) Tyrosine aminotransferase (rat liver). Methods Enzym 17:633–637

    Article  CAS  Google Scholar 

  • Hoagland DR, Boyer TC (1936) General nature and process of salt accumulation by roots with description of experimental methods. Plant Physiol 11:471–507

    Article  PubMed  CAS  Google Scholar 

  • Hynes RK, Nelson LM (2001) Isolation of novel plant-beneficial soil bacteria to enhance legume crop productivity. In: Proceedings of Soils and Crops Workshop, University of Saskatchewan, Saskatoon, SK, pp 237–242

  • Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  • Kamilkova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and l-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  CAS  Google Scholar 

  • Kittell BL, Helinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacteriol 171:5458–5466

    PubMed  CAS  Google Scholar 

  • Koga J (1995) Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochim Biophys Acta 1249:1–13

    PubMed  Google Scholar 

  • Koga J, Adachi T, Hidaka H (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet 226:10–16

    Article  PubMed  CAS  Google Scholar 

  • Koga J, Syono K, Ichikawa T, Adachi T (1994) Involvement of l-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae. Biochim Biophys Acta 1209:241–247

    PubMed  Google Scholar 

  • Kradolfer P, Niederberger P, Hutter R (1982) Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch Microbiol 133:242–248

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Scher FM, Tipping EM, Laliberte M (1986) Nitrogen-fixing Pseudomonas isolated from the roots of plants grown in the Canadian high arctic. Appl Environ Microbiol 511:251–255

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The ribosomal database project. Nucleic Acids Res 24:82–85

    Article  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174

    Article  PubMed  CAS  Google Scholar 

  • Manulis S, Barash I (2003) Pantoea agglomerans pvs gypsophilae and betae, recently evolved pathogens? Mol Plant Pathol 4:307–314

    Article  CAS  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335

    Article  PubMed  Google Scholar 

  • Nelson L M (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Online Crop Manag. DOI 10.1094/CM-2004-0301-05-RV

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  • Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  PubMed  CAS  Google Scholar 

  • Pedraza RO, Ramirez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett 233:15–21

    Article  PubMed  CAS  Google Scholar 

  • Pilet PE, Chollet R (1970) Sur le dosage colorimetrique de l’acide indolylacetique. C R Acad Sci Ser 271:1675–1678

    CAS  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699

    PubMed  CAS  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Botany 52:487–511

    CAS  Google Scholar 

  • Zimmer W, Hundeshagen B, Niederau E (1994) Demonstration of the indolepyruvate decarboxylase gene homologue in different auxin-producing species of the Enterobacteriaceae. Can J Microbiol 40:1072–1107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science and Engineering Research Council of Canada (NSERC). We thank R. O’Brien for HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise M. Nelson.

Additional information

Responsible Editor: Peter A. H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeeva, E., Hirkala, D.L.M. & Nelson, L.M. Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297, 1–13 (2007). https://doi.org/10.1007/s11104-007-9314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9314-5

Keywords

Navigation