Advertisement

Plant and Soil

, Volume 293, Issue 1–2, pp 99–106 | Cite as

Nickel localization in tissues of different hyperaccumulator species of Euphorbiaceae from ultramafic areas of Cuba

  • Rosalina Berazaín
  • Vicenta de la FuenteEmail author
  • Lourdes Rufo
  • Nuria Rodríguez
  • Ricardo Amils
  • Blanca Díez-Garretas
  • Daniel Sánchez-Mata
  • Alfredo Asensi
Regular Article

Abstract

Pantropical species of the genera Phyllanthus and Euphorbia and the Cuban endemic genus Leucocroton from the Euphorbiaceae family, were selected for nickel localization microanalysis. Scanning Electron Microscopy coupled with Energy Dispersive X-ray Microanalysis (SEM-EDX) was used for qualitative detection of nickel in the selected Ni-hyperaccumulator species: Euphorbia helenae, Leucocroton linearifolius, L. flavicans Phyllanthus orbicularis, P. discolor and P. xpallidus, all collected from Cuban ultramafic soils. The leaves and stems from the Euphorbiaceae species analyzed were the organs with higher nickel accumulation. Elemental mapping of leaves and stem tissues from these species have been compared. The highest Ni concentrations were found in the laticifer tubes of stems and the epidermis tissues of leaves in all the analyzed species, suggesting a general pattern of the Euphorbiaceae family for nickel accumulation. The high nickel concentrations and its rather homogeneous distribution found in leaves of these Ni-hyperaccumulating plants suggest a possible role in protection mechanisms against environmental stress, such as UV irradiation.

Keywords

Elemental mapping Euphorbiaceae Nickel Nickel hyperaccumulators SEM-EDX 

Notes

Acknowledgements

This work was supported by grants BOS2002–02148 and CGL2006–02534 and institutional grant from the Fundación Areces to the Centro de Biología Molecular. L. R. is a fellow from the Comunidad Autónoma de Madrid. We thank both the Universidad Autónoma de Madrid and the Universidad Complutense for their financial support (International Programs) that enabled VF and DSM to attend all the events of the IVth International Conference on Serpentine Ecology held in Havana (Cuba) in April, 2003, which was the seed of this study.

References

  1. Baker AJM, Proctor J, Van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In: Baker AJM, Proctor J, Reeves RD (eds) The Vegetation of Ultramafic (Serpentine) Soils. Intercept Ltd. Andover, UK, pp 291–304Google Scholar
  2. Berazaín R, Fuente V, Sanchez-Mata D, Rufo L, Rodríguez N, Amils R (2007) Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biol Trace Elem Res 115:67–86PubMedCrossRefGoogle Scholar
  3. Bhatia NP, Baker AJM, Walsh KB, Midmore DJ (2005) A role for nickel in osmotic adjustment in drought-stressed plants of the nickel hyperaccumulator Stackousia tryonii Bailey. Planta 223:134–139PubMedCrossRefGoogle Scholar
  4. Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell and Environ 27:705–716CrossRefGoogle Scholar
  5. Borhidi A (1991) Phytogeography and Vegetation Ecology of Cuba. Akadémiai Kiadó, Budapest, HGGoogle Scholar
  6. Boyd RS, Moar WJ (1999) The defensive function of Ni in plants: response of the polyphagos herbivore Spodoptera exigua (Lepidoptera: Noctuidae) to hyperaccumulator and accumulator species of Streptanthus (Brassicaceae). Oecologia 118:218–224CrossRefGoogle Scholar
  7. Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, Oxon. 380 ppGoogle Scholar
  8. Brooks RR, Shaw S, Asensi A (1981) The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Plantarum 51:167–170CrossRefGoogle Scholar
  9. Brooks RR, Robinson BH, Howes AW, Chiarucci A (2001) An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv for phytoremediation and phytomining of nickel. S Afr J Sci 97:558–560Google Scholar
  10. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12PubMedCrossRefGoogle Scholar
  11. Davis MA, Boyd RS (2000) Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytol 146:211–217CrossRefGoogle Scholar
  12. Ernst WHO (1976) Physiological and biochemical aspects of metal tolerance. In: Mansfeld TA (ed) Effects of air pollutants on plants. Cambridge University Press, Cambridge, UK, pp 115–133Google Scholar
  13. Gómez F, Grau A, Vázquez L, Amils R (2004) UV radiation effects over microorganisms and study of protective agents. ESA SP-545:21–25Google Scholar
  14. Kersten WJ, Brooks RR, Reeves RD, Jaffré T (1980) Nature of nickel complexes in Psychotria dourrei and other nickel-accumulating plants. Phytochemistry 19:1963–1965CrossRefGoogle Scholar
  15. Krämer U (2000) Cadmium for all meals – plants with an unusual appetite. New Phytol 45:1–5CrossRefGoogle Scholar
  16. Krämer U, Cotterhowells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  17. Lee J, Reeves RD, Brooks RR, Jaffre T (1977) Isolation and identification of a citrate-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505CrossRefGoogle Scholar
  18. Merce ALR, Landaluze JS, Mangrich AS, Szpoganicz B, Sierakowski MR (2001) Complexes of arabinogalactan of Pereskia aculeate and Co2+, Cu2+, Mn2+ and Ni2+ . Biores Technol 76:29–37CrossRefGoogle Scholar
  19. Metcalfe CR (1983) Laticifers and latex . In Anatomy of the dicotyledons. Metclafe CR, Chalk L (eds) Vol. II. Claredon press, Oxford, pp 70–81Google Scholar
  20. Perrier N, Colin F, Jaffré T, Ambrosi JP, Rose J, Bottero JY (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. CR Geosci 336:567–577CrossRefGoogle Scholar
  21. Persans MW, Yan X, Patnoe JM, Kramer V, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol 121:1117–1126PubMedCrossRefGoogle Scholar
  22. Psaras GK, Constantinidis TH, Cotsopoulos B, Manetas Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Ann Bot (London) 86:73–78CrossRefGoogle Scholar
  23. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and sons, New York, USA, pp 193–229Google Scholar
  24. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224CrossRefGoogle Scholar
  25. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot (London) 83:29–38CrossRefGoogle Scholar
  26. Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulator, complexation and distribution of Ni in Sebertia acuminata. Phytochemistry 47(3):339–47PubMedCrossRefGoogle Scholar
  27. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53(2):257–308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Rosalina Berazaín
    • 1
  • Vicenta de la Fuente
    • 2
    Email author
  • Lourdes Rufo
    • 2
  • Nuria Rodríguez
    • 3
  • Ricardo Amils
    • 3
    • 4
  • Blanca Díez-Garretas
    • 5
  • Daniel Sánchez-Mata
    • 6
  • Alfredo Asensi
    • 5
  1. 1.Jardín Botánico NacionalUniversidad de La HabanaCiudad HabanaCuba
  2. 2.Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Centro de Astrobiología (INTA-CSIC)Torrejón de Ardoz, MadridSpain
  4. 4.Centro de Biología MolecularUniversidad Autónoma de MadridMadridSpain
  5. 5.Departamento de Biología Vegetal, Facultad de CienciasUniversidad de MálagaMálagaSpain
  6. 6.Departamento de Biología Vegetal II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain

Personalised recommendations