Plant and Soil

, Volume 293, Issue 1–2, pp 107–119 | Cite as

The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil

  • R. D. ReevesEmail author
  • A. J. M. Baker
  • T. Becquer
  • G. Echevarria
  • Z. J. G. Miranda
Original Paper


Major collections of the ultramafic flora of Goiás, central Brazil, were made by Brooks and co-workers in 1988 and 1990. At the time of reports on this material in 1990–1992 much of it had been identified only tentatively and incompletely, but the area was clearly interesting for taxonomic and biogeochemical reasons. Further progress has been made but still only two-thirds of the specimens are identified at the species level. Following a third collection in early 2005, we now have 800 specimens from this area, with chemical analyses of all the plants and of more than 120 representative soil samples. New species have been found, e.g., in Paspalum (Poaceae) and Pterolepis (Melastomataceae). There is a need for more taxonomic work in genera such as Cnidoscolus (Euphorbiaceae), Lippia (Verbenaceae), Turnera and Piriqueta (Turneraceae), and Vellozia (Velloziaceae). Ni hyperaccumulation (>1,000 mg/kg in dry plant matter) has now been found in a total of 79 specimens, representing more than 30 different species. Notable Ni hyperaccumulators include Pfaffia sarcophylla (Amaranthaceae), species of Justicia, Lophostachys and Ruellia (Acanthaceae), Porophyllum (Asteraceae), several species of Lippia (Verbenaceae), Turnera and Piriqueta (Turneraceae), and a possibly new Cnidoscolus (Euphorbiaceae). Ni hyperaccumulation has not been found in plants of the outcrops of Morro Feio or Crominia-Mairipotaba; it seems to be confined to the extensive layered ultramafics of Barro Alto and the Macedo-Niquelândia areas. The distribution of Ni-values in the Brazilian plant collection is different from that found in the Mediterranean and California, where there is a clear distinction between accumulator and non-accumulator plants: in Brazil the distribution is more continuous, and median Ni concentrations are much greater. An ultramafic hill just north of Niquelândia deserves to be protected because of the presence there of many of the hyperaccumulators and species probably endemic to the Goiás ultramafics.


Ultramafic soils Goiás Serpentine flora Nickel hyperaccumulation Heavy metals Ca/Mg ratio 



This work was supported initially by the National Geographic Society (USA) and recently from Brazil under Projeto CNPq—Edital Universal No. 475623/2003-7 “Distribução e biodisponibilidade dos metais pesados em solos de uso agrícola do Planalto Central.” The authors are grateful to numerous taxonomists in many herbaria around the world for their continuing efforts to identify the plant specimens collected.


  1. Berbert CO (1970) Geologia dos complexos basicos-ultrabasicos de Goiás. Ann. XXIV Congr. Brasileiro, Sociedade Brasileira de Geologia, Brasilia, pp 41–50Google Scholar
  2. Berbert CO, Svisero DP, Sial AN, Meyer HOA (1981) Upper mantle material in the Brazilian shield. Earth Sci Rev 17:109–133CrossRefGoogle Scholar
  3. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57CrossRefGoogle Scholar
  4. Brooks RR, Malaisse F (1985) The heavy metal-tolerant flora of Southcentral Africa. Balkema, RotterdamGoogle Scholar
  5. Brooks RR, Reeves RD, Baker AJM, Rizzo JA, Diaz Ferreira H (1990) The Brazilian serpentine plant expedition (BRASPEX), 1988. Natl Geogr Res 6:205–219Google Scholar
  6. Brooks RR, Reeves RD, Baker AJM (1992) The serpentine vegetation of Goiás state, Brazil. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK, pp 67–81Google Scholar
  7. Davidse G, Filgueiras TS (1993) Paspalum longiaristatum (Poaceae: Paniceae), a new serpentine endemic from Goiás, Brazil, and the first awned species in the genus. Novon 3:129–132CrossRefGoogle Scholar
  8. Filgueiras TS, Davidse G, Zuloaga FO (1993) Ophiochloa, a new endemic serpentine grass genus (Poaceae: Paniceae) from the Brazilian cerrado vegetation. Novon 3:360–366CrossRefGoogle Scholar
  9. Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Trav. et Documents de l’ORSTOM 124, ParisGoogle Scholar
  10. Pedersen TM (1997) Studies in South American Amaranthaceae, 4. Adansonia 19:217–251Google Scholar
  11. Proctor J, Nagy L (1992) Ultramafic rocks and their vegetation: an overview. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK, pp 469–494Google Scholar
  12. Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK, pp 253–277Google Scholar
  13. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224CrossRefGoogle Scholar
  14. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38CrossRefGoogle Scholar
  15. Smith LB (1955) Notes on Brazilian phanerogams. J Wash Acad Sci 45:197–200Google Scholar
  16. Trescases JJ, Melfi AJ, Barros de Oliveira SM (1981) Nickeliferous laterites of Brazil. In: Laterisation processes. IBH Publishing, New Delhi, pp 170–184Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • R. D. Reeves
    • 1
    Email author
  • A. J. M. Baker
    • 1
  • T. Becquer
    • 2
  • G. Echevarria
    • 3
  • Z. J. G. Miranda
    • 4
  1. 1.School of BotanyThe University of MelbourneParkvilleAustralia
  2. 2.Institut de Recherche pour le Développement-Embrapa Cerrados, CP 7091BrasiliaBrazil
  3. 3.Laboratoire Sols et EnvironnementENSAIA-INPL/INRA, BP 172Vandoeuvre-lès-NancyFrance
  4. 4.Embrapa Cerrados, CP 8223PlanaltinaBrazil

Personalised recommendations