Plant and Soil

, Volume 290, Issue 1–2, pp 69–83 | Cite as

Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance

  • A. Oberson
  • S. Nanzer
  • C. Bosshard
  • D. Dubois
  • P. Mäder
  • E. Frossard
Original Paper


Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.


15N Isotope dilution 15N Natural abundance Organic farming Soybean Symbiotic N2 fixation Reference plants 


  1. Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9CrossRefGoogle Scholar
  2. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycle 17:1031CrossRefGoogle Scholar
  3. Bergersen FJ, Turner GL, Gault RR, Chase DL, Brockwell J (1985) The natural abundance of N-15 in an irrigated soybean crop and its use for the calculation of nitrogen fixation. Aust J Agric Res 36:411–423CrossRefGoogle Scholar
  4. Besson JM, Niggli U (1991) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-dynamisch, organisch-biologisch und konventionell:1. Konzeption des DOK-Versuches: 1. und 2. Fruchtfolgeperiode Schweiz Landw Forsch 31:79–109Google Scholar
  5. Bosshard C (2007 in preparation) Nitrogen dynamics in organic and conventional cropping systems. Swiss Federal Institute of Technology Zurich, ETH ZurichGoogle Scholar
  6. Carranca C, de Varennes A, Rolston DE (1999) Biological nitrogen fixation estimated by N-15 dilution, natural N-15 abundance, and N difference techniques in a subterranean clover-grass sward under Mediterranean conditions. Eur J Agron 10:81–89CrossRefGoogle Scholar
  7. Danso SKA, Hardarson G, Zapata F (1993) Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant Soil 152:25–52CrossRefGoogle Scholar
  8. Davidson EA, Hart SC, Shanks S, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349CrossRefGoogle Scholar
  9. Dirks B, Scheffer H (1930) Der Kohlensäure-bikarbonatauszug und der Wasserauszug als Grundlage zur Ermittlung der Phophorsäurebedürftigkeit der Böden. Landwirtschaftliche Jahrbücher 71:73–99Google Scholar
  10. Drevon JJ (1997) Nodular diagnosis. In: Morot-Gaudry J-F (ed) Nitrogen assimilation by plants. INRA, UK, pp 417–426Google Scholar
  11. Freyer HD, Aly AIM (1974) Nitrogen-15 variations in fertilizer nitrogen. J Environ Qual 3:405CrossRefGoogle Scholar
  12. Gallet A, Flisch R, Ryser JP, Nosberger J, Frossard E, Sinaj S (2003) Uptake of residual phosphate and freshly applied diammonium phosphate by Lolium perenne and Trifolium repens. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 166:557–567CrossRefGoogle Scholar
  13. Gathumbi SM, Cadisch G, Giller KE (2002) N-15 natural abundance as a tool for assessing N-2-fixation of herbaceous, shrub and tree legumes in improved fallows. Soil Biol Biochem 34:1059–1071CrossRefGoogle Scholar
  14. Gerzabek MH, Haberhauer G, Kirchmann H (2001) Nitrogen distribution and N-15 natural abundances in particle size fractions of a long-term agricultural field experiment. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 164:475–481CrossRefGoogle Scholar
  15. Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, Wallingford, Oxon, UKGoogle Scholar
  16. Hansen B, Kristensen ES, Grant R, Hogh-Jensen H, Simmelsgaard SE, Olesen JE (2000) Nitrogen leaching from conventional versus organic farming systems—a systems modelling approach. Eur J Agron 13:65–82CrossRefGoogle Scholar
  17. Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspecitves Plant Ecol Evol Syst 1:92–120CrossRefGoogle Scholar
  18. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere—a review. Chem Geol 59:87–102CrossRefGoogle Scholar
  19. Herridge DF, Brockwell J (1988) Contributions of fixed nitrogen and soil nitrate to the nitrogen economy of irrigated soybean. Soil Biol Biochem 20:711–717CrossRefGoogle Scholar
  20. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  21. Hopkins DW, Wheatley RE, Robinson D (1998) Stable isotope studies of soil nitrogen. In: Griffiths H (ed) Stable isotopes: integration of biological, ecological and geochemical processes. BIOS Scientific Publisher Ltd., Oxford, pp 75–88Google Scholar
  22. Huss-Danell K, Chaia E (2005) Use of different plant parts to study N-2 fixation with N-15 techniques in field-grown red clover (Trifolium pratense). Physiol Plant 125:21–30CrossRefGoogle Scholar
  23. KIP (1999) Richtlinien für den ökologischen Leistungsnachweis (ÖLN). Koordinationsgruppe Richtlinien Deutschschweiz, Landwirtschaftliche Beratungszentrale LindauGoogle Scholar
  24. Kirchmann H, Bergstrom L (2001) Do organic farming practices reduce nitrate leaching? Commun Soil Sci Plant Anal 32:997–1028CrossRefGoogle Scholar
  25. Langmeier M, Frossard E, Kreuzer M, Mäder P, Dubois D, Oberson A (2002) Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22:789–800CrossRefGoogle Scholar
  26. Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697PubMedCrossRefGoogle Scholar
  27. McAuliffe C, Chamblee DS, Uribe-Arango H, Woodhouse WW (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by 15N. Agron J 50:334–337CrossRefGoogle Scholar
  28. McNeill AM, Pilbeam CJ, Harris HC, Swift RS (1998) Use of residual fertiliser 15N in soil for isotope dilution estimates of N2 fixation by grain legumes. Aust J Agric Res 49:821–828CrossRefGoogle Scholar
  29. Okito A, Alves B, Urquiaga S, Boddey RM (2004) Isotopic fractionation during N-2 fixation by four tropical legumes. Soil Biol Biochem 36:1179–1190CrossRefGoogle Scholar
  30. Reiter K, Schmidtke K, Rauber R (2002) The influence of long-term tillage systems on symbiotic N2 fixation of pea (Pisum sativum L.) and red clover (Trifolium pratense L.). Plant Soil 238:41–55CrossRefGoogle Scholar
  31. Reuter DJ, Robinson JB (1986) Plant analysis: an interpretation manual. Inkata Press, Melbourne, 218ppGoogle Scholar
  32. Schwenke GD, Peoples MB, Turner GL, Herridge DF (1998) Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen? Aust J Exp Agric 38:61–70CrossRefGoogle Scholar
  33. Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural abundance. Aust J Plant Physiol 13:699–744Google Scholar
  34. Siegrist S, Schaub D, Pfiffner L, Mäder P (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric Ecosyst Environ 69:253–264CrossRefGoogle Scholar
  35. Sorensen P, Jensen ES, Nielsen NE (1994) Labelling of animal manure nitrogen with 15N. Plant Soil 162:31–37CrossRefGoogle Scholar
  36. Stockdale EA, Lampkin NH, Hovi M, Keatinge R, Lennartsson EKM, Macdonald DW, Padel S, Tattersall FH, Wolfe MS, Watson CA (2001) Agronomic and environmental implications of organic farming systems. Adv Agron 70:261–327CrossRefGoogle Scholar
  37. Thomsen IK, Schjønning P, Christensen BT (2003) Mineralisation of 15N-labelled sheep manure in soils of different texture and water contents. Biol Fertil Soils 37:295–301Google Scholar
  38. Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N-2 fixation by annual legumes. Field Crop Res 65:211–228CrossRefGoogle Scholar
  39. Unkovich MJ, Pate JS, Sanford P, Armstrong EL (1994) Potential precision of the d15N natural abundance method in the field estimates of nitrogen fixation by crop and pasture legumes in south-west Australia. Aust J Agric Res 45:119–132CrossRefGoogle Scholar
  40. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  41. Vinther FP, Jensen ES (2000) Estimating legume N2 fixation in grass-clover mixtures of a grazed organic cropping system using two 15N methods. Agric Ecosyst Environ 78:139–147CrossRefGoogle Scholar
  42. Walther U, Ryser J-P, Flisch R (2001) Grundlagen für die Düngung im Acker- und Futterbau 2001. Agrarforschung 8:1–80Google Scholar
  43. Werner RA, Schmidt HL (2002) The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • A. Oberson
    • 1
  • S. Nanzer
    • 1
  • C. Bosshard
    • 1
  • D. Dubois
    • 2
  • P. Mäder
    • 3
  • E. Frossard
    • 1
  1. 1.Institute of Plant SciencesGroup of Plant Nutrition, ETH Zurich, Research Station EschikonLindauSwitzerland
  2. 2.Research Station of Agroecology and Agriculture (FAL)Zurich-ReckenholzSwitzerland
  3. 3.Research Institute of Organic Farming (FiBL)FrickSwitzerland

Personalised recommendations