Advertisement

Plant and Soil

, Volume 282, Issue 1–2, pp 53–65 | Cite as

Specific Interactions between Local Metallicolous Plants Improve the Phytostabilization of Mine Soils

  • H. Frérot
  • C. Lefèbvre
  • W. Gruber
  • C. Collin
  • A. Dos Santos
  • J. Escarré
Article

Abstract

At present, no efficient technique is available for cleaning up soils which are highly polluted by heavy metals. Limiting the movement of pollutants out of the contaminated area by creating a dense and persistent plant cover appears to be the more reasonable approach. In this context, phytostabilization is a technique that uses metallicolous plants to revegetate highly polluted soils. This paper presents the results of an experiment performed in situ using metallicolous ecotypes of four plant species native to the Mediterranean French region, and grown in different combinations at a polluted site over two years. The soils were highly polluted with zinc, cadmium and lead. The aim was to find the best species mixture in terms of cover, biomass and duration. The four species used were the biennial legume Anthyllis vulneraria, two perennial grasses, Festuca arvernensis and Koeleria vallesiana, and the perennial forb Armeria arenaria. Mixtures which included A. vulneraria, and especially when in combination with F. arvernensis, showed the highest values of cover and biomass. After flowering, the biennial individuals of A. vulneraria disappeared but subsequent germination and survival of seedlings occurred abundantly under the two grasses. Mixtures with A. arenaria showed the lowest values of cover and biomass. Soil nitrogen increased in the plots with A. vulneraria as well as the concentration of essential nutrients (N P K) in the aerial parts of the two grasses. In contrast, the concentration of metals (Zn Pb Cd) decreased in the aboveground biomass of the latter in the same plots. These results show that reciprocal facilitation effects can act in heavy metal polluted environments, and that phytostabilization efforts in the Mediterranean region can be improved by using mixtures including local metallicolous legume and grass species.

Keywords

facilitation heavy metals metallophytes nitrogen fixation phytostabilization species mixtures metal tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriano, D C, Wenzel, W W, Vangronsveld, J, Bolan, N S 2004Role of assisted natural remediation in environmental cleanupGeoderma122121142CrossRefGoogle Scholar
  2. Antonovics, J, Bradshaw, A D, Turner, G 1971Heavy metal tolerance in plantsAdv. Ecol. Res.7185CrossRefGoogle Scholar
  3. Arthur, E L, Rice, P J, Anderson, T A, Baladi, S M, Henderson, K L D, Coats, J R 2005Phytoremediation – An overviewCrit. Rev. Plant Sci.24109122CrossRefGoogle Scholar
  4. Bastrenta, B, Lebreton, J D, Thompson, J D 1995Predicting demographic change in response to herbivory: a model of the effects of grazing and annual variation on the population dynamics of Anthyllis vulneraria J. Ecol.83803811Google Scholar
  5. Berti, W R, Cunningham, S 2000Phytostabilization of metalsRaskin, IEnsley, B D eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the EnvironmentJohn Wiley & Sons, IncNY7188Google Scholar
  6. Borovik, A J 1990Characteristics of metals in biological systemsShaw, A J eds. Heavy Metal Tolerance in Plants: Evolutionary AspectsCRC PressBoca Raton, Florida, USA35Google Scholar
  7. Bradshaw, A D, Chadwick, M J 1980The Restoration of Land. The Ecology and Reclamation of Derelict and Degraded LandBlackwell Scientific PublicationOxford, EnglandGoogle Scholar
  8. Bradshaw, A D, McNeilly, T, Gregory, R P G 1965Industrialisation, evolution and the development of heavy-metal tolerance in plantsEcology and the Industrial Society. British Ecological Society Symposium5327343Google Scholar
  9. Brown, G, Brinkmann, K 1992Heavy metal tolerance in Festuca ovina L. from contaminated sites in the Eifel mountains, GermanyPlant and Soil143239247CrossRefGoogle Scholar
  10. Callaway, R M 1995Positive interactions among plantsBot. Rev.61306349Google Scholar
  11. Chaney, R L, Malik, M, Li, Y M, Brown, S L, Brewer, E P, Angle, J S, Baker, A J M 1997Phytoremediation of soil metalsCurr. Opin. Biotechnol.8279284PubMedCrossRefGoogle Scholar
  12. Cottenie A, Verloo M, Kiekens L, Velghe G and Camerlynck R 1982 Chemical analysis of plants and soils. Laboratory of analytical and agrochemistry, State University Ghent. 63pp.Google Scholar
  13. Couderc H 1975 Etude biosytématique des espèces françaises du genre Anthyllis L. et notamment de l’Anthyllis vulneraria L., PhD thesis, Université de Paris XI, Centre d’Orsay.Google Scholar
  14. Cunningham, S D, Berti, W R, Huang, J M 1995Phytoremediation of contaminated soilsTrend Biotechnol.13393397CrossRefGoogle Scholar
  15. Delorme, T A, Gagliardi, J V, Angle, J S, Berkum, P, Chaney, R L 2003Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soilSoil Sci. Soc. Am. J.6717461754CrossRefGoogle Scholar
  16. Demange, M 1973Contribution à l’étude des gisements plombo-zincifères françaisBulletin du Bureau des Ressources Géologiques et Minières (deuxième série) Section II, n°1130Google Scholar
  17. El-Kenawy, Z A, Angle, J S, Gewaily, E M, El-Wafai, N A, Berkum, P, Chaney, R L, Ibekwe, M A 1997Zinc and cadmium effects on the early stages of nodulation in white cloverAgron. J.89875880CrossRefGoogle Scholar
  18. Ernst WHO1990Mine vegetation in EuropeShaw, A J eds. Heavy Metal Tolerance in Plants: Evolutionary AspectsCRC PressBoca Raton, Floride, USA2137Google Scholar
  19. Ernst, WHO 1996Bioavailability of heavy metals and decontamination of soils by plantsAppl. Geochem.11163167CrossRefGoogle Scholar
  20. Frérot H, 2004 Aspects génétiques et écologiques de la tolérance aux métaux lourds et de l’hyperaccumulation chez Thlaspi caerulescens (Brassicaceae) – Perspectives en phytoremédiation. PhD thesis, Université Montpellier II.Google Scholar
  21. Gadgil, R L 1969Tolerance of heavy metals and the reclamation of industrial wasteJ. Appl. Ecol.6247258Google Scholar
  22. Harper J L 1977 The Population Biology of Plants. Academic Press.Google Scholar
  23. Harris, J A, Birch, P, Palmer, J P 1996Land Restoration and Reclamation: Principles and PracticeLongmanEngland, HarlowGoogle Scholar
  24. Jefferies, R A, Willson, K, Bradshaw, A D 1981The potential of legumes as a nitrogen-source for the reclamation of derelict landPlant and Soil59173177CrossRefGoogle Scholar
  25. Jordan W R, Gilpin M E and Aber J D 1987 Restoration Ecology: A Synthetic Approach to Ecological Research, Cambridge.Google Scholar
  26. Koch, G W, Winner, W E, Nardone, A, Mooney, H A 1987A system for controlling the root and shoot environment for plant growth studiesEnviron. Exp. Bot.27365377CrossRefGoogle Scholar
  27. Lefèbvre C 1975 Evolutionary problems in heavy metals tolerant Armeria maritima, Proceedings Intern. Conf. Heavy Metals in the Environment, pp. 155–168, Toronto, Canada.Google Scholar
  28. McGrath, S P, Brooks, P C, Giller, K E 1988Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens LSoil Biol. Biochem.20415424CrossRefGoogle Scholar
  29. Motulsky, H J 1999Analysing Data with GraphPad PrismSan DiegoCalifornia, USAGoogle Scholar
  30. Rascio, N 1977Metal accumulation by some plants growing on zinc-mine depositsOikos29250253Google Scholar
  31. Reeves, R D, Brooks, R R 1983European species of Thlaspi L. (Cruciferae) as indicators of nickel and zincJ. Geochem. Explor.18275283CrossRefGoogle Scholar
  32. Remon, E, Bouchardon, J L, Cornier, B, Guy, B, Leclerc, J C, Faure, O 2005Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restorationEnviron. Pollut.137316323PubMedCrossRefGoogle Scholar
  33. Rousset, O, Lepart, J 2000Positive and negative interactions at different life stages of a colonizing species (Quercus humilis)J. Ecol.88401412CrossRefGoogle Scholar
  34. Salt, D E, Blaylock, M, Kumar, N P B A, Dushenkov, V, Ensley, B D 1995Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plantsBiotechnology13468474PubMedCrossRefGoogle Scholar
  35. Salt, D E, Smith, R D, Raskin, I 1998PhytoremediationAnnu. Rev. Plant Physiol. Mol. Biol.49643668CrossRefGoogle Scholar
  36. Sans, F X, Escarré, J, Gorse, V, Lepart, J 1998Persistence of Picris hieracioides populations in old fields: an example of facilitationOikos83283292Google Scholar
  37. SAS Institute 2001 SAS user’s guide : Statistics. Version 8.2: North Carolina, USA.Google Scholar
  38. Schat, H, Ten Bookum, W M 1992Genetic control of copper tolerance in Silene vulgaris Heredity68219229Google Scholar
  39. Smith, R A H, Bradshaw, A D 1970Reclamation of toxic metalliferous wastes using tolerant populations of grassNature227376378PubMedCrossRefGoogle Scholar
  40. Smith, S R, Giller, K E 1992Effective Rhizobium leguminosarum biovar trifolii present in five soils contaminated with heavy-metals from long-term applications of sewage-sludge or metal mine spoilSoil Biol. Biochem.24781788CrossRefGoogle Scholar
  41. Tutin, T G, Burges, N A, Chater, A O, Edmondson, J R, Heywood, V H, Moore, D M, Valentine, D H, Walters, S M, Webb, D A 1993Flora EuropaeaCambridge University PressCambridge, UKGoogle Scholar
  42. Vangronsveld, J, Colpaert, J V, Tichelen, K K 1996Reclamation of a bare industrial area contaminated by non-ferrous metals: Physicochemical and biological evaluation of the durability of soil treatment and revegetationEnviron. Pollut.94131140PubMedCrossRefGoogle Scholar
  43. Vangronsveld, J, Vanassche, F, Clijsters, H 1995Reclamation of a bare industrial-area contaminated by nonferrous metals – in-situ metal immobilization and revegetationEnviron. Pollut.875159PubMedCrossRefGoogle Scholar
  44. von Ende C N 2001 Repeated-measures analysis. Growth and other time-dependent measures. In Design and Analysis of Ecological Experiments. Eds. S M Scheiner and J Gurevitch. pp. 134–157. Oxford University Press.Google Scholar
  45. Whiting, S N, Reeves, R D, Richards, D, Johnson, M S, Cooke, J A, Malaisse, F, Paton, A, Smith, J A C, Angle, J S, Chaney, R L, Ginocchio, R, Jaffré, T, Johns, R, McIntyre, T, Purvis, O W, Salt, D E, Zhao, F J, Baker, A J 2004Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediationRestor. Ecol.12106116CrossRefGoogle Scholar
  46. Wilkins, D A 1978The measurements of tolerance to edaphic factors by means of root growthNew Phytol.80623633CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • H. Frérot
    • 1
  • C. Lefèbvre
    • 2
  • W. Gruber
    • 2
  • C. Collin
    • 3
  • A. Dos Santos
    • 3
  • J. Escarré
    • 3
  1. 1.Laboratoire de Génétique et Evolution des Populations VégétalesUniversité Lille 1Villeneuve d’Ascq CedexFrance
  2. 2.Laboratoire de Génétique et Ecologie VégétalesUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Centre d’Ecologie Fonctionnelle et EvolutiveCNRS-MontpellierMontpellier Cedex 5France

Personalised recommendations