Plant and Soil

, Volume 276, Issue 1–2, pp 95–113 | Cite as

Leaf Mechanical Properties in Sclerophyll Woodland and Shrubland on Contrasting Soils

  • Jennifer Read
  • Gordon D. Sanson
  • Byron B. Lamont
Article

Abstract

Sclerophylly is a common feature of vegetation on infertile soils, and its adaptive significance has been linked to nutrient-use efficiency by protection of leaves to maximise carbon gain. However, there has been little investigation of how the leaf mechanical properties that contribute to the phenomenon of sclerophylly vary along nutrient gradients. In this paper, we investigate how leaf mechanical properties vary among plants on three contrasting soil types (grey sand, laterite soil, and soil overlying dolerite) in a Mediterranean climate in southwestern Australia. Most species were sclerophyllous, but there was 5-fold variation in leaf mass per unit area (LMA) and 17- to 473-fold variation in mechanical properties among species. Species growing on laterite and/or sand (low-nutrient soils) had higher punch strength, work (a measure of toughness) to punch, specific (per unit leaf thickness) work to punch, work to shear, specific work to shear, and flexural stiffness (EIW) than those on dolerite soils (higher in nutrients). There were few differences in mean values of leaf mechanical properties between the two low-nutrient soils, possibly because the lower concentration of nutrients in the sand is balanced by the greater soil volume than the laterite soil (higher concentration of nutrients, but shallower). There were also few differences in leaf properties between plants of the same species growing on contrasting soil types. There was some variation among sclerophyllous species in their mechanical characteristics, but overall, EIW provided the strongest contribution to sclerophylly, explaining up to 81% of the variation in LMA. There was no evidence of differences among soil types in the relationships of mechanical properties with LMA, and therefore, no evidence of variation in the mechanical constitution of sclerophylly among soil types.

Key words

flexural stiffness leaf mass per area leaf nutrition sclerophylly strength toughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, R, Chapin III, F S 2000The mineral nutrition of wild plants revisited: a re-evaluation of processes and patternsAdv. Ecol. Res.30167Google Scholar
  2. APG2003An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IIBot. J. Linn. Soc.141399436Google Scholar
  3. Beadle, N C W 1966Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophyllyEcology479921007Google Scholar
  4. Beadle, N C W 1968Some aspects of the ecology and physiology of Australian xeromorphic plantsAust. J. Sci.30348355Google Scholar
  5. Bray, R H, Kurtz, L T 1945Determination of total, organic and available phosphorus in soilsSoil Sci.593945Google Scholar
  6. Brown, J M, Hopkins, A J M 1983The kwongan (sclerophyllous shrublands) of Tutanning Nature Reserve, Western AustraliaAust. J. Ecol.86373Google Scholar
  7. Casher, L E 1996Leaf toughness in Quercus agrifolia and its effects on tissue selection by first instars of Phryganidia californica (Lepidoptera: Dioptidae) and Bucculatrix albertiella (Lepidoptera: Lyonetiidae)Ann. Entomol. Soc. Am.89109121Google Scholar
  8. Chabot, B F, Hicks, D J 1982The ecology of leaf life spansAnn. Rev. Ecol. Syst.13229259CrossRefGoogle Scholar
  9. Choong, M F 1996What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillarsFunct. Ecol.10668674Google Scholar
  10. Choong, M F, Lucas, P W, Ong, J S Y, Pereira, B, Tan, H T W, Turner, I M 1992Leaf fracture toughness and sclerophylly: their correlations and ecological implicationsNew Phytol.121597610Google Scholar
  11. Christodoulakis, N S, Mitrakos, K A 1987

    Structural analysis of sclerophylly in eleven evergreen phanerophytes in Greece

    Tenhunen, J DCatarino, F MLange, O LOechel, W C eds. Plant Response to Stress: Functional Analysis in Mediterranean EcosystemsSpringer-VerlagBerlin547551
    Google Scholar
  12. Coley, P D 1983Herbivory and defensive characteristics of tree species in a lowland tropical forestEcol. Monogr.53209233Google Scholar
  13. Crisp, M D, Cook, L G 2003

    Phylogeny and embryo sac evolution in the endemic Australasian Papilionoid tribes Mirbelieae and Bossiaeeae

    Klitgaard, B BBruneau, A eds. Advances in Legume Systematics, part 10, Higher Level SystematicsRoyal Botanic GardensKew253268
    Google Scholar
  14. Edwards, C, Read, J, Sanson, G 2000Characterising sclerophylly: some mechanical properties of leaves from heath and forestOecologia123158167CrossRefGoogle Scholar
  15. Grimshaw, H M 1987

    The determination of total phosphorus in soils by acid digestion

    Rowland, AP eds. Chemical Analysis in Environmental ResearchInstitute of Terrestrial EcologyAbbots Ripton, UK9295
    Google Scholar
  16. Grimshaw, H M, Allen, S E, Parkinson, J A 1989

    Nutrient elements

    Allen, S E eds. Chemical Analysis of Ecological Materials 2nd ednBlackwell Scientific PublicationsOxford81159
    Google Scholar
  17. Groom, P K, Lamont, B B 1999Which common indices of sclerophylly best reflect differences in leaf structure?Ecoscience6471474Google Scholar
  18. Grubb, P J 1986

    Sclerophylls, pachyphylls and pycnophylls: the nature and significance of hard leaf surfaces

    Juniper, BSouthwood, R eds. Insects and the Plant SurfaceEdward ArnoldLondon137150
    Google Scholar
  19. Hoot, S B, Douglas, A W 1998Phylogeny of the Proteaceae based on atpB and atpB-rbcL intergenic spacer region sequencesAust. Syst. Bot.11301320CrossRefGoogle Scholar
  20. Jackson, A P 1992

    Bone, nacre, and other ceramics

    Vincent, JFV eds. Biomechanics – Materials: A Practical ApproachOxford University PressOxford3356
    Google Scholar
  21. King, D A 1999Juvenile foliage and the scaling of tree proportions, with emphasis on EucalyptusEcology8019441954Google Scholar
  22. Ladiges, P Y, McFadden, G I, Middleton, N, Orlovich, D A, Treloar, N, Udovic, F 1999Phylogeny of Melaleuca, Callistemon, and related genera of the Beaufortia suballiance (Myrtaceae) based on 5S and ITS−1 spacer regions of nrDNACladistics15151172CrossRefGoogle Scholar
  23. Lamont, B 1985Gradient and zonal analysis of understorey supression by Eucalyptus wandooVegetatio634966Google Scholar
  24. Lamont, B B, Groom, P K, Cowling, R M 2002High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrationsFunct. Ecol.16403412CrossRefGoogle Scholar
  25. Lamont, B B, Markey, A 1995Biogeography of fire-killed and resprouting Banksia species in south-western AustraliaAust. J. Bot.43283303CrossRefGoogle Scholar
  26. Loveless, A R 1961A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leavesAnn. Bot.25168184Google Scholar
  27. Loveless, A R 1962Further evidence to support a nutritional interpretation of sclerophyllyAnn. Bot.26551561Google Scholar
  28. Mac Nally, R, Horrocks, G 2002Relative influences of patch, landscape and historical factors on birds in an Australian fragmented landscapeJ. Biogeogr.29395410CrossRefGoogle Scholar
  29. McArthur, W M 1991Reference Soils of South-western AustraliaDept of AgricultureWestern AustraliaGoogle Scholar
  30. Mooney, H A, Dunn, E L 1970Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubsEvolution24292303Google Scholar
  31. Mooney, H A, Gulmon, S L 1982Constraints on leaf structure and function in reference to herbivoryBioScience32198206Google Scholar
  32. Niklas, K J 1999A mechanical perspective on foliage leaf form and functionNew Phytol.1431931CrossRefGoogle Scholar
  33. Niinemets, U 1999Components of leaf dry mass per area – thickness and density– alter photosynthetic capacity in reverse directions in woody plantsNew Phytol.144 3547CrossRefGoogle Scholar
  34. Oertli, J J, Lips, S H, Agami, M 1990The strength of sclerophyllous cells to resist collapse due to negative turgor pressureActa Œcol.11281289Google Scholar
  35. Pate, J S, Verboom, W H, Galloway, P D 2001Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships?Aust. J. Bot.49529560CrossRefGoogle Scholar
  36. Purvis, A, Rambaut, A 1995Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative dataComput. Appl. Biosci.11247251PubMedGoogle Scholar
  37. Read, J, Edwards, C, Sanson, G D, Aranwela, N 2000Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest speciesPlant Biosyst.134261277Google Scholar
  38. Read, J, Sanson, G D 2003Characterising sclerophylly: the mechanical properties of a diverse range of leaf typesNew Phytol.1608199CrossRefGoogle Scholar
  39. Reich, P B, Uhl, C, Walters, M B, Ellsworth, D S 1991Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree speciesOecologia861624CrossRefGoogle Scholar
  40. Roderick, M L, Berry, S L, Noble, I R, Farquhar, G D 1999aA theoretical approach to linking the composition and morphology with the function of leavesFunct. Ecol.13683695Google Scholar
  41. Roderick, M L, Berry, S L, Saunders, A R, Noble, I R 1999bOn the relationship between the composition, morphology and function of leavesFunct. Ecol.13696710Google Scholar
  42. Rosenthal, J P, Kotanen,  1994Terrestrial plant tolerance to herbivoryTREE9145148Google Scholar
  43. Rundel, P W 1988

    Leaf structure and nutrition in Mediterranean-climate sclerophylls

    Specht, RL eds. Mediterranean-type EcosystemsKluwer Academic PublishersDordrecht157167
    Google Scholar
  44. Salleo, S, Nardini, A 2000Sclerophylly: evolutionary advantage or mere epiphenomenon?Plant Biosyst.134247259Google Scholar
  45. Sanson, G, Read, J, Aranwela, N, Clissold, F, Peeters, P 2001The measurement of leaf biomechanical properties in studies of herbivory: opportunities, problems and proceduresAust. Ecol.26535546CrossRefGoogle Scholar
  46. Schimper, A F W 1898Pflanzengeographie auf physiologischen GrundlageFischerJenaGoogle Scholar
  47. Schimper A F W 1903 Plant-Geography Upon a Physiological Basis. Transl. W.R. Fisher. Clarendon Press, OxfordGoogle Scholar
  48. Sobrado, M A, Medina, E 1980General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ȁ8Banaȁ9 vegetation of AmazonasOecologia45341345CrossRefGoogle Scholar
  49. Specht, R L, Rundel, P W 1990Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern AustraliaAust. J. Bot.3845974CrossRefGoogle Scholar
  50. Turner, I M 1994aSclerophylly: primarily protective?Funct. Ecol.8669675Google Scholar
  51. Turner, I M 1994bA quantitative analysis of leaf form in woody plants from the worldȁ9s major broadleaved forest typesJ. Biogeogr.21413419Google Scholar
  52. Turner, I M, Choong, M F, Tan, H T W, Lucas, P W 1993How tough are sclerophylls?Ann. Bot.71343345CrossRefGoogle Scholar
  53. Soest, P J, Robertson, J B, Lewis, B A 1991Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutritionJ. Dairy Sci.7435833597PubMedGoogle Scholar
  54. Vincent, J F V 1992

    Plants

    Vincent, JFV eds. Biomechanics – Materials: A Practical ApproachOxford University PressOxford165191
    Google Scholar
  55. Wainwright, S A, Biggs, W D, Currey, J D, Gosline, J M 1976Mechanical Design in OrganismsPrinceton University PressPrinceton, USAGoogle Scholar
  56. Western Australian Herbarium 1998– FloraBase — The Western Australian Flora. Department of Conservation and Land ManagementGoogle Scholar
  57. Wilson, P G, Oȁ9Brien, M M, Gadek, P A, Quinn, C J 2001Myrtaceae revisited: a reassessment of infrafamilial groupsAm. J. Bot.8820132025Google Scholar
  58. Wright, I J, Reich, P B, Westoby, M 2001Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitatsFunct. Ecol.15423434Google Scholar
  59. Wright, I J, Reich, P B, Westoby, M, Ackerly, D D, Baruch, Z, Bongers, F, Cavender-Bares, J, Chapin, T, Cornelissen, J H C, Diemer, M, Flexas, J, Garnier, E, Groom, P K, Gulias, J, Hikosaka, K, Lamont, B B, Lee, T, Lee, W, Lusk, C, Midgley, J J, Navas, M, Niinemets, U, Oleksyn, J, Osada, N, Poorter, H, Poot, P, Prior, L, Pyankov, V I, Roumet, C, Thomas, S C, Tjoelker, M G, Veneklaas, E J, Villar, R 2004The worldwide leaf economics spectrumNature428821827PubMedGoogle Scholar
  60. Wright, I J, Westoby, M 2002Leaves at low versus high rainfall: coordination of structure, lifespan and physiologyNew Phytol.155103116CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jennifer Read
    • 1
  • Gordon D. Sanson
    • 1
  • Byron B. Lamont
    • 2
  1. 1.School of Biological SciencesMonash UniversityMelbourneAustralia
  2. 2.Department of Environmental BiologyCurtin University of TechnologyPerthAustralia

Personalised recommendations