Skip to main content
Log in

Root Morphology and Anchorage of Six Native Tree Species from a Tropical Montane Forest and an Elfin Forest in Ecuador

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root architecture of tree species was investigated at two different altitudes in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow soils, while slope angles of both sites were comparable (20–50°). Three tree species typical for the montane forest at 1900 m (Graffenrieda emarginata (Ruiz & Pav.) Triana (Melastomataceae), Clethra revoluta (Ruiz & Pav.) Spreng. (Clethraceae), Vismia tomentosa Ruiz & Pav. (Clusiaceae)) and for the elfin forest at 3000 m (Weinmannia loxensis Harling (Cunoniaceae), Clusia spec. (Clusiacaea) Styrax foveolaria Perkins (Styraceae)) were examined. At 1900 m, 92% of the trees grew upright, in comparison to 52% at 3000 m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all trees with tap roots or with shoots connected by coarse rhizomes, 83% of the trees with stilt roots, and 50% of the trees in which stems or roots were supported by other trees grew upright, suggesting that these characteristics were relevant for tree stability. Root system morphology differed markedly between altitudes. In contrast to 1900 m, where 20% of structural roots originated in the deeper mineral soil, root origin at 3000 m was restricted to the forest floor. The mean ratio of root cross sectional area to tree height decreased significantly from 6.1 × 10−3 mm−1 at 1900 m to 3.2 × 10−3 mm−1 at 3000 m. The extent of root asymmetry increased significantly from 0.29 at 1900 m to 0.62 at 3000 m. This was accompanied by a significantly lower number of dominant roots at 3000 m (2.3 compared to 3.8 at 1900 m). In conclusion, native tree species growing in tropical montane and elfin forests show a variety of root traits that improve tree stability. Root system asymmetry is less important for tree stability where anchorage is provided by a deep and solid root–soil plate. When deep rooting is impeded, root traits improving the horizontal extension of the root–soil plate are more pronounced or occur more frequently. Furthermore, mutual mechanical support of roots and stems of neighboring trees seems to be an appropriate mechanism to provide anchorage in soils with low bulk density and in environments with high wind speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

aspect ratio

CSA:

cross sectional area

DBH:

diameter at breast height

ZRT:

zone of rapid taper

References

  • L Arraiga (2000) ArticleTitleTypes and causes of tree mortality in a tropical montane cloud forest of Tamaulipas, Mexico J. Trop. Ecol. 16 623–636 Occurrence Handle10.1017/S0266467400001619

    Article  Google Scholar 

  • J Cavalier C A Mejia (1990) ArticleTitleClimatic factors and tree stature in the elfin cloud forest of Serranda de Macuira, Colombia Agric. Forest Meteorol. 53 105–123 Occurrence Handle10.1016/0168-1923(90)90127-R

    Article  Google Scholar 

  • D Chiatante S Sarnataro A Di Iorio G S Scippa (2003a) ArticleTitleThe influence of steep slopes on root system development J. Plant Growth Regul. 21 247–260 Occurrence Handle10.1007/s00344-003-0012-0

    Article  Google Scholar 

  • D Chiatante M Sarnataro S Fusco A Di Iorio G S Scippa (2003b) ArticleTitleModification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartinum junceum L. growing on slopes Plant Biosynth. 137 45–55

    Google Scholar 

  • R A Cordero (1999) ArticleTitleEcophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture and stem biomechanics Tree Physiol. 19 153–163 Occurrence Handle12651578

    PubMed  Google Scholar 

  • M P Coutts (1983) ArticleTitleRoot architecture and tree stability Plant Soil 71 171–188 Occurrence Handle10.1007/BF02182653

    Article  Google Scholar 

  • M P Coutts C N N Nielsen B C Nicoll (1999) ArticleTitleThe development of symmetry, rigidity and anchorage in the structural root system of conifers Plant Soil 217 1–15 Occurrence Handle10.1023/A:1004578032481

    Article  Google Scholar 

  • M J Crook A R Ennos (1996) ArticleTitleThe anchorage mechanics of deep rooted larch, Larix europea × L. japonica J. Exp. Bot. 47 1509–1517 Occurrence Handle1:CAS:528:DyaK28XntVals7Y%3D

    CAS  Google Scholar 

  • M J Crook A R Ennos J R Banks (1997) ArticleTitleThe function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees J. Exp. Bot. 48 1703–1716 Occurrence Handle1:CAS:528:DyaK2sXnt1OntLk%3D Occurrence Handle10.1093/jexbot/48.314.1703

    Article  CAS  Google Scholar 

  • V Cucchi D Bert (2003) ArticleTitleWind-firmness in Pinus pinaster Ait. stands in Southwest France: influence of stand density, fertilisation and breeding in two experimental stands damaged during the 1999 storm Ann. Forest Sci. 60 209–226 Occurrence Handle10.1051/forest:2003013

    Article  Google Scholar 

  • V Cucchi C Meredieu A Stokes S Berthier D Bert M Najar A Denis R Lastennet (2004) ArticleTitleRoot anchorage of inner and edge trees in stands of Maritime pine (Pinus pinater Ait.) growing in different podzolic soil conditions Trees 18 460–466 Occurrence Handle10.1007/s00468-004-0330-2

    Article  Google Scholar 

  • S Czarnes S Hiller A R Dexter P D Hallet F Bartoli (1999) ArticleTitleRoot:soil adhesion in the maize rhizosphere: the rheological approach Plant Soil 211 69–86 Occurrence Handle1:CAS:528:DyaK1MXnt1Kruro%3D Occurrence Handle10.1023/A:1004656510344

    Article  CAS  Google Scholar 

  • A Di Iorio B Lasserre G S Scippa D Chiatante (2005) ArticleTitleRoot system architecture of Quercus pubescens trees growing on different sloping conditions Ann. Bot. 95 351–361 Occurrence Handle15567806

    PubMed  Google Scholar 

  • A R Ennos (1990) ArticleTitleThe anchorage of leek seedlings: the effect of root length and soil strength Ann. Bot. 65 409–416

    Google Scholar 

  • M Förster (1970) ArticleTitleEinige Beobachtungen zur Ausbildung des Wurzelsystems tropischer Waldbäume Allg. Forst Jagdztg. 141 185–188

    Google Scholar 

  • A Hagedorn (2001) ArticleTitleExtent and significance of soil erosion in southern Ecuador Die Erde 132 75–92

    Google Scholar 

  • Jenik J 1978 Roots and root systems in tropical trees: morphologic and ecologic aspects. In Tropical Trees as a Living System. Eds. P B Tomlinson. and M H Zimmermann. pp. 323–349. Cambridge University Press.

  • J Kodrik M Kodrik (2002) ArticleTitleRoot biomass of beech as a factor influencing the wind tree stability J. Forest Sci. 48 549–564

    Google Scholar 

  • R O Lawton (1982) ArticleTitleWind stress and elfin stature in a montane rain forest tree: an adaptive explanation Am. J. Bot. 69 1224–1230 Occurrence Handle10.2307/2442746

    Article  Google Scholar 

  • C Mattheck (1992) Die Baumgestalt als Autobiographie Einführung in die Mechanik der Bäume und ihre Körpersprache Kernforschungszentrum Karlsruhe 137

    Google Scholar 

  • S B Mickovski A R Ennos (2002) ArticleTitleA morphological and mechanical study of the root systems of suppressed crown Scots Pine Pinus sylvestris Trees 16 274–280 Occurrence Handle10.1007/s00468-002-0177-3

    Article  Google Scholar 

  • S B Mickovski A R Ennos (2003a) ArticleTitleThe effect of unidirectional stem flexing on shoot and root morphology and architecture in young Pinus sylvestris trees Can. J. Forest Res. 33 2202–2209 Occurrence Handle10.1139/x03-139

    Article  Google Scholar 

  • S B Mickovski A R Ennos (2003b) ArticleTitleAnchorage and asymmetry in the root system of Pinus peuce Silva Fennica 37 161–173

    Google Scholar 

  • J R Moore (2000) ArticleTitleDifferences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types Forest Ecol. Manage. 135 63–71 Occurrence Handle10.1016/S0378-1127(00)00298-X

    Article  Google Scholar 

  • B C Nicoll D Ray (1996) ArticleTitleAdaptive growth of tree root systems in response to wind action and site conditions Tree Physiol. 16 891–898 Occurrence Handle14871781

    PubMed  Google Scholar 

  • Nielsen C N N 1990 Einflüsse von Pflanzenabstand und Stammzahlhaltung auf Wurzelform, Wurzelbiomasse, Verankerung sowie auf die Biomassenverteilung im Hinblick auf die Sturmfestigkeit der Fichte. University of Göttingen, Faculty of Forestry and Niedersächsische Forstliche Versuchsanstalt, Thesis 100, J D Sauerländer´s Verlag, Frankfurt am Main. 279 pp.

  • J Polomski N Kuhn (2001) ArticleTitleWurzelhabitus und Standfestigkeit der Waldbäume Forstwiss. Centralbl 120 303–317

    Google Scholar 

  • D Ray B C Nicoll (1998) ArticleTitleThe effect of soil water-table depth on root-plate development and stability of Sitka spruce Forestry 71 169–182 Occurrence Handle10.1093/forestry/71.2.169

    Article  Google Scholar 

  • M Richter (2003) ArticleTitleUsing epiphytes and soil temperatures for eco-climatic interpretations in southern Ecuador Erdkunde 57 161–181

    Google Scholar 

  • G B Rigg E S Harrar (1931) ArticleTitleThe root systems of trees growing in sphagnum Am. J. Bot. 18 391–397 Occurrence Handle10.2307/2435874

    Article  Google Scholar 

  • L S Santiago (2000) ArticleTitleUse of coarse woody debris by the plant community of a Hawaiian montane cloud forest Biotropica 32 633–641 Occurrence Handle10.1646/0006-3606(2000)032[0633:UOCWDB]2.0.CO;2

    Article  Google Scholar 

  • R J Schaetzl D L Johnson S F Burns T W Small (1989) ArticleTitleTree uprooting: review of terminology, process, and environmental implications Can. J. Forest Res. 19 1–11

    Google Scholar 

  • M Schrumpf G Guggenberger C Valarezo W Zech (2001) ArticleTitleTropical montane rain forest soils. Development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes Die Erde 132 43–60

    Google Scholar 

  • A Stokes C Mattheck (1996) ArticleTitleVariation of wood strength in tree roots J. Exp. Bot. 47 693–699 Occurrence Handle1:CAS:528:DyaK28XjsFymsrs%3D

    CAS  Google Scholar 

  • A Stokes (1999) ArticleTitleStrain distribution during anchorage failure of Pinus pinaster Ait at different ages and tree growth response to wind-induced root movement Plant Soil 217 17–27 Occurrence Handle10.1023/A:1004613126353

    Article  Google Scholar 

  • A Watson (2000) ArticleTitleWind-induced forces in the near-surface lateral roots of radiata pine Forest Ecol. Manage. 135 133–142 Occurrence Handle10.1016/S0378-1127(00)00305-4

    Article  Google Scholar 

  • P L Weaver (2002) ArticleTitleA chronology of hurricane induced changes in Puerto Rico´s lower montane rain forest Interciencia 27 252–258

    Google Scholar 

  • B F Wilson (1975) Distribution of secondary thickening in tree root systems J G Torrey D T Clarkson (Eds) The Development and Function of Roots Academic Press Inc New York 197–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Soethe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soethe, N., Lehmann, J. & Engels, C. Root Morphology and Anchorage of Six Native Tree Species from a Tropical Montane Forest and an Elfin Forest in Ecuador. Plant Soil 279, 173–185 (2006). https://doi.org/10.1007/s11104-005-1005-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-1005-5

Keywords

Navigation