Plant and Soil

, Volume 269, Issue 1–2, pp 341–356 | Cite as

Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation

  • Daniel P. RasseEmail author
  • Cornelia Rumpel
  • Marie-France Dignac


Understanding the origin of the carbon (C) stabilised in soils is crucial in order to device management practices that will foster Caccumulation in soils. The relative contributions to soilC pools of roots vs. shoots is one aspect that has been mostly overlooked, although it appears a key factor that drives the fate of plant tissueC either as mineralized CO2 or as stabilized soil organic matter (SOM). Available studies on the subject consistently indicate that rootC has a longer residence time in soil than shootC. From the few studies with complete datasets, we estimated that the mean residence time in soils of root-derived C is 2.4times that of shoot-derived C. Our analyses indicate that this value is biased neither by an underestimation of root contributions, as exudation was considered in the analysis, nor by a priming effect of shoot litter on SOM. Here, we discuss the main SOM stabilisation mechanisms with respect to their ability to specifically protect root-derived SOM. Comparing in situ and incubation experiments suggests that the higher chemical recalcitrance of root tissues as compared to that of shoots is responsible for only a small portion, i.e. about one fourth, of the difference in mean residence time in soils of root-derived vs. shoot-derivedC. This suggests that SOM protection mechanisms other than chemical recalcitrance are also enhanced by root activities: (1)physico-chemical protection, especially in deeper horizons, (2)micrometer-scale physical protection through myccorhiza and root-hair activities, and (3)chemical interactions with metal ions. The impact of environmental conditions within deeper soil layers on rootC stabilisation appear difficult to assess, but is likely, if anything, to further increase the ratio between the mean residence time of root vs. shootC in soils. Future advances are expected from isotopic studies conducted at the molecular level, which will help unravel the fate of individual shoot and root compounds, such as cutins and suberins, throughout soil profiles.


C sequestration physico-chemical protection rhizosphere SOM suberin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaway, WG., Ashford, AE 1996Structure of hair roots in Lysinema ciliatum R.Br. and its implications for their water relationsAnn. Bot. (London)77383388Google Scholar
  2. Amato, M, Jackson, RB, Butler, JHA., Ladd, JN. 1984Decomposition of plant material in Australian soils. II. Residual organic 14C and 15N from legume plant parts decomposing under field and laboratory conditionsAust. J. Soil Res.22331341CrossRefGoogle Scholar
  3. Angers, DA, Bolinder, MA, Carter, MR, Gregorich, EG, Drury, CF, Liang, BC, Voroney, RP, Simard, RR, Donaid, RG, Beyaert, RP., Martel, J. 1997Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern CanadaSoil Till. Res.41191201CrossRefGoogle Scholar
  4. Angers, DA, Voroney, RP., Côté, D. 1995Dynamics of soil organic matter and corn residues affected by tillage practicesSoil Sci. Soc. Am. J.5913111315Google Scholar
  5. Balesdent, J., Balabane, M. 1996Major contribution of roots to soil carbon storage inferred from maize cultivated soilsSoil Biol. Biochem.912611263Google Scholar
  6. Balesdent, J, Chenu, C., Balabane, M. 2000Relationship of soil organic matter dynamics to physical protection and tillageSoil Tillage Res.35215230Google Scholar
  7. Baldock, JA., Skjemstad, JO. 2000Role of the mineral matrix and minerals in protecting natural organic materials against decompositionOrg. Geochem.31697710CrossRefGoogle Scholar
  8. Barber, SA. 1979Corn residue management and soil organic matterAgron. J.71625627Google Scholar
  9. Barber, SA., Martin, JK. 1976The release of organic substances by cereal roots into soilNew Phytol.766980Google Scholar
  10. Bending, GD., Turner, MK. 1999Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soilBiol. Fert. Soil29319327Google Scholar
  11. Bernards, MA. 2002Demystifying suberinCan. J. Bot.80227240CrossRefGoogle Scholar
  12. Beuch, S, Boelcke, B., Belau, L. 2000Effects of the organic residues of Miscanthus × giganteus on soil organic matter level of arable soilsJ. Agron. Crop. Sci.183111119Google Scholar
  13. Bolinder, MA, Angers, DA, Giroux, M., Laverdière, MR. 1999Estimating Cinputs retained as soil organic matter from corn (Zea maysL.)Plant Soil2158591CrossRefGoogle Scholar
  14. Boone, RD. 1994Light-fraction soil organic matter: Origin and contribution to net nitrogen mineralizationSoil Biol. Biochem.2614591468CrossRefGoogle Scholar
  15. Briggs, CL., Ashford, AE. 2001Structure and composition of the thick wall in hair root epidermal cells of Woollsia pungensNew Phytol.149219232CrossRefGoogle Scholar
  16. Brimecombe MJ., de Leij F., Lynch JM 2001 The effect of root exudates on rhizosphere microbial populations. In The Rhizosphere, Eds. RPinton, ZVaranini and PNannipieri. pp.95–140. Marcel Dekker, N.YGoogle Scholar
  17. Broadbent, FE., Nakashima, T 1974Mineralization of carbon and nitrogen in soil amended with carbon-13 and nitrogen-15 labeled plant materialSoil Sci. Soc. Amer. Proc.38313315Google Scholar
  18. Bull, ID, Nott, CJ, Bergen, PF, Poulton, PR., Evershed, RP. 2000Organic geochemical studies of soils from the Rothamsted classical experiments – VI The occurrence and source of organic acids in an experimental grassland soilSoil Biol. Biochem.3213671376CrossRefGoogle Scholar
  19. Campbell, CA, Lafond, GP, Zentner, RP., Biederbeck, VO. 1991Influence of fertilizer and straw baling on soil organic matter in a thin black chernozem in western CanadaSoil Biol. Biochem.23443446CrossRefGoogle Scholar
  20. Chabbi, A, HinesMand Rumpel, C. 2001The role of organic carbon excretion by bulbous rush roots and its turnover and utilization by bacteria under iron plaques in extremely acid sedimentsEnviron. Exp. Bot.46237245CrossRefGoogle Scholar
  21. Chan, KY, Heenan, DP., Oates, A. 2002Soil carbon fractions and relationship to soil quality under different tillage and stubble managementSoil Tillage Res.63133139CrossRefGoogle Scholar
  22. Cheng, WX, Johnson, DW., Fu, SL. 2003Rhizosphere effects on decomposition: Controls of plant species, phenology, and fertilizationSoil Sci. Soc. Am. J.6714181427Google Scholar
  23. Chiu, CY, Wang, MK, Hwong, JL., King, HB. 2002Physical and chemical properties in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forestCommun. Soil Sci. Plant Anal.3317231735CrossRefGoogle Scholar
  24. Clapp, CE, Allmaras, RR, Layese, MF, Linden, DR., Dowdy, RH. 2000Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilisation under continuous corn management in MinnesotaSoil Tillage Res.55127142CrossRefGoogle Scholar
  25. Czarnes, S, Hallett, PD, Bengough, AG., Young, IM. 2000Root- and microbial-derived mucilages affect soil structure and water transportEur. J. Soil Sci.51435443CrossRefGoogle Scholar
  26. Dahmani-Muller, H, Oort, F, Gelie, B., Balabane, M. 2000Strategies of heavy metal uptake by three plant species growing near a metal smelterEnviron. Pollut.109231238PubMedCrossRefGoogle Scholar
  27. Deen, W., Kataki, PK. 2003Carbon sequestration in a long-term conventional versus conservation tillage experimentSoil Tillage Res.74143150CrossRefGoogle Scholar
  28. de Leeuw JW., Largeau C 1993 A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Organic Geochemistry. Eds. MH Engel and SA Macko, pp.23–72. Plenum Press, N.YGoogle Scholar
  29. Neergaard, A, Hauggaard-Nielsen, H, Jensen, LS., Magid, J. 2002Decomposition of white clover (Trifolium repens) and ryegrass (Lolium perenne) components: C and N dynamics simulated with the DAISY soil organic matter submodelEur. J. Agron.164355Google Scholar
  30. Derome, JRM., Nieminen, T. 1998Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW FinlandEnviron. Pollut.103219228CrossRefGoogle Scholar
  31. Vos, CHR, Schat, H, Waal, MAM, Voojs, R., Ernst, WHO. 1991Increased resistance to copper-induced damage of root cell plasmalemma in copper tolerant Silene cucubalusPhysiol. Plant.82523528Google Scholar
  32. Dignac MF, Bahri H, Rumpel C, Rasse DP, Bardoux G, Balesdent J, Girardin C, Mariotti A 7 and Chenu C 2004 Carbon-13 natural abundance (δ13C) as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France). Geoderma (in press)Google Scholar
  33. Dodd, JC, Boddington, CL, Rodriguez, A, Gonzalez-Chavez, C., Mansur, I. 2000Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: form, function and detectionPlant Soil226131151CrossRefGoogle Scholar
  34. Doran, JW. 1980Soil biological and biochemical changes associated with reduced tillage.Soil SciSoc. Am. J.44765771Google Scholar
  35. Eusterhues, K, Rumpel, C, Kleber, M., Kögel-Knabner, I. 2003Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradationOrg. Geochem.3415911600CrossRefGoogle Scholar
  36. Farrar, J, Hawes, M, Jones, D., Lindow.,  2003How roots control the flux of carbon to the rhizosphereEcology84827837Google Scholar
  37. Fernandez I, Mahieu N., Cadisch G. (2003). Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochem. Cy.17 1075Google Scholar
  38. Fisher, MJ, Rao, IM, Ayarzq, MA, Lascano, CE, Sanz, JI, Thomas, RJ., Vela, RR. 1994Carbon storage by introduced deep-rooted grasses in the South American savannasNature371236238CrossRefGoogle Scholar
  39. Follett, RF. 2001Soil management concepts and carbon sequestration in cropland soilsSoil Tillage Res.617792CrossRefGoogle Scholar
  40. Fontaine, S, Mariotti, A., Abbadie, L. 2003The priming effect of organic matter: a question of microbial competition? Soil BiolBiochem.35837843Google Scholar
  41. Fransson AM, Vinogradoff S, Godbold DL, vanHees PAW., Jones DL 2003 Aluminum complexation suppresses citrate uptake by acid forest soil microorganisms. Soil Biol. Biochem. (in press)Google Scholar
  42. Franzluebbers, AJ, Hons, FM., Zubere, DA. 1994Seasonal changes in soil microbial biomass and mineralizableC and N in wheat management systemsSoil Biol. Biochem.2614691475Google Scholar
  43. Fu, S., Cheng, W. 2002Rhizosphere priming effects on the decomposition of soil organic matter in C4 and C3 grassland soilsPlant Soil238289294CrossRefGoogle Scholar
  44. Gale, WJ, Cambardella, CA., Bailey, TB. 2000Root-derived carbon and the formation and stabilization of aggregatesSoil Sci. Soc. Am. J.64201207Google Scholar
  45. Gaudinski, JB, Trumbore, SE, Davidson, EA, Cook, AC, Markewitz, D., Richter, DD. 2001The age of fine-root carbon in three forests of the eastern United States measured by radiocarbonOecologia129420429Google Scholar
  46. Gaudinski, JB, Trumbore, SE, Davidson, EA., Zheng, SH. 2000Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxesBiogeochemistry513369CrossRefGoogle Scholar
  47. Gijsman, AJ, Alarcon, HF., Thomas, RJ. 1997Root decomposition in tropical grasses and legumes, as affected by soil texture and seasonSoil Biol. Biochem.2914431450Google Scholar
  48. Gill, RA., Burke, IC. 2002Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass stepPlant Soil241233242CrossRefGoogle Scholar
  49. Gill, RA, Burke, IC, Milchunas, DG., Lauenroth, WK. 1999Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern ColoradoEcosystems2226236Google Scholar
  50. Gill, RA, Kelly, RH, Parton, WJ, Day, KA, Jackson, RB, Morgan, JA, Scurlock, JMO, Tieszen, LL, Castle, JV, Ojima, DS., Zhang, XS. 2002Using simple environmental variables to estimate below-ground productivity in grasslandsGlobal Ecol. Biogeogr.117986CrossRefGoogle Scholar
  51. Gleixner G, Czimczik D J, Kramer C, Lühker B and SchmidtMWI 2001 Plant compounds and their turnover and stabilization as soil organic matter. In Global Biogeochemical Cycles in the Climate System. Eds. E D Schuitze, M Heimann, S Harrison, E Holland, J L Lloyd, C Prentice and D Schimel. pp. 201–215, Academic Press, San Diego, CA.Google Scholar
  52. Goering HK., Van Soest PJ 1970 Forage fiber analysis, apparatus, reagents, procedures, and some applications. Agriculture Handbook Vol.379. ARS-USDA, Washington, DCGoogle Scholar
  53. Golchin, A, Oades, JM., Skjemstad, JO. 1994Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopyAust. J. Soil Res.32285309Google Scholar
  54. Grayston, SJ, Vaughan, D., Jones, D. 1996Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activityAppl. Soil Ecol.52956Google Scholar
  55. Gupta, SR., Singh, JS. 1981The effect of plant species, weather variables and chemical composition of plant material on decomposition in a tropical grasslandPlant Soil5999117CrossRefGoogle Scholar
  56. Hamadi, Z, Steinberger, Y, Kutiel, P, Lavee, H., Berness, G. 2000Decomposition of Avena sterilis litter under arid conditionsJ. Arid Environ.46281293CrossRefGoogle Scholar
  57. Hammel KE. (1997). Fungal degradation of lignin. In: Driven by Nature: Plant Litter Quality and Decomposition Eds. GCadisch and KE Giller. pp.33–45. CAB International, Wallingford, UKGoogle Scholar
  58. Haynes, RJ., Beare, MH. 1997Influence of six crop species on aggregate stability and some labile organic matter fractionsSoil Biol. Biochem.2916471653CrossRefGoogle Scholar
  59. Heim, A, Brunner, J, Frossard, E., Luster, J. 2003Aluminum effects on Picea abies at low solution concentrationsSoil Sci. Soc. Amer. J.67895898Google Scholar
  60. Helal, HM., Sauerbeck, DR. 1986Effect of plant roots on carbon metabolism of soil microbial biomassZ. Pflanzenernaehr. Bodenkd.149181188Google Scholar
  61. Hooker, ML, Herron, GM., Penas, P. 1982Effects of residue burning, removal and incorporation on irrigated cereal crop yields and soil chemical propertiesSoil Sci. Soc. Am. J.46122126Google Scholar
  62. Horn, R., Dexter, AR. 1989Dynamics of soil aggregation in an irrigated desert loessSoil Tillage Res.33253266Google Scholar
  63. Hütsch, BW, Augustin, J., Merbach, W. 2002Plant rhizodeposition – An important source for carbon turnover in soilsJ. Plant Nutr. Soil Sci.165397407CrossRefGoogle Scholar
  64. Janzen, HH, Campbell, CA, Izaurralde, RC, Ellert, BH, Juma, N, McGill, WB., Zentner, RP. 1998Management effects on soilC storage on the Canadian prairiesSoil Tillage Res.47181195CrossRefGoogle Scholar
  65. Jastrow, JD, Miller, RM., Lussenshop, J. 1998Contribution of interacting biological mechanisms to soil aggregate stabilization in restored prairieSoil Biol. Biochem.30905916CrossRefGoogle Scholar
  66. Jentschke, G, Drexhage, M, Fritz, H-W, Fritz, E, Schella, B, Lee, D-H, Gruber, F, Heimann, J, Kuhr, M, Schmidt, J, Schmidt, S, Zimmermann, R., Godbold, D. 2001Does soil acidity reduce subsoil rooting in Norway spruce (Picea abies)?.Plant Soil23791108CrossRefGoogle Scholar
  67. Jobbagy, EG., Jackson, RB. 2000The vertical distribution of soil organic carbon and its relation to climate and vegetationEcol. Appl.10423436Google Scholar
  68. Jones, DL., Edwards, AC. 1998Influence of sorption on the biological utilization of two simple carbon substratesSoil Biol. Biochem.3018951902CrossRefGoogle Scholar
  69. Jones, DL. 1998Organic acids in the rhizosphere – A critical reviewPlant Soil2052544CrossRefGoogle Scholar
  70. Kaiser, K., Guggenberger, G. 2000The role of DOM sorption to mineral surfaces in the preservation of organic matter in soilsOrg. Geochem.31711725CrossRefGoogle Scholar
  71. Kaiser, K., Zech, W. 1998Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulphateSoil Sci. Soc. Am. J.62129136Google Scholar
  72. Kilbertus, G. 1980Microhabitats in soil aggregates: Their relationship with bacterial biomass and size of prokaryotes presentRev. Ecol. Biol. Sol.1743557Google Scholar
  73. Kinraide, TB., Sweeney, BK. 2003Proton alleviation of growth inhibition by toxic metals (Al, La, Cu) in rhizobiaSoil Biol. Biochem.5199205Google Scholar
  74. Kirkham, D., Powers, WL. 1972Advanced Soil PhysicsWiley-InterscienceNew York534Google Scholar
  75. Kisselle, KW, Garrett, CJ, FU, S, Hendrix, PF, Crossley, DA,Jr, Coleman, DC, Potter, RL. 2001Budgets for root-derivedC and litter-derivedC: comparison between conventional tillage and no tillage soilsSoil Biol. Biochem.3310671075CrossRefGoogle Scholar
  76. Kögel-Knabner, I, Ziegler, F, Riederer, M., Zech, W. 1989Distribution and decomposition pattern of cutin and suberin in forest soilsZ. Pflanzenemaehr. Bodenkd.152409413Google Scholar
  77. Kögel-Knabner, I. 2002The macromolecular organic composition of plant and microbial residues as inputs to soil organic matterSoil Biol. Biochem.34139162CrossRefGoogle Scholar
  78. Kraus, TEC, Dahlgren, RA., Zasoski, RJ. 2003Tannins in nutrient dynamics of forest ecosystems – A reviewPlant Soil2564166CrossRefGoogle Scholar
  79. Krull, ES, Baldock, JA., Skjemstad, JO. 2003Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnoverFunct. Plant Biol.30207222CrossRefGoogle Scholar
  80. Kuzyakov, Y. 2002Review: Factors affecting rhizosphere priming effectsJ. Plant Nutr. Soil Sc.165382396Google Scholar
  81. Kuzyakov, Y, Ehrensberger, H., Stahr, K. 2001Carbon partitioning and below-ground translocation by Lolium perenneSoil Biol. Biochem.336174Google Scholar
  82. Kuzyakov, Y, Friedelb, JK., Stahr, K. 2000Review of mechanisms and quantification of priming effectsSoil Biol. Biochem.3214851498CrossRefGoogle Scholar
  83. Kuzyakov, Y, Yilmaz, G., Stahr, K. 1999Decomposition of plant residue of Lolium perenne in soils and induced priming effects under different land useAgribiol. Res.522534Google Scholar
  84. Langley, JA, Hungate, BA. 2003Mycorrhizal controls on belowground litter qualityEcology8423022312Google Scholar
  85. Larson, WE, Clapp, CE, Pierre, WH., Morachan, YB. 1972Effects of increasing amounts of organic residues on continuous corn: II Organic carbon, nitrogen, phosphorus, and sulphurAgron. J.64204208Google Scholar
  86. Liang, BC, Wang, XL., Ma, BL. 2002Maize root-induced change in soil organic carbon poolsSoil Sci. Soc. Am. J.66845847Google Scholar
  87. Liljeroth, E, Kuikman, P., Van Veen, JA. 1994Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levelsPlant Soil161233240CrossRefGoogle Scholar
  88. Mary, B. 1987Effets du précédent cultural sur la disponibilité du sol en azote minéralC.R. Acad. Agric. Fr.735769Google Scholar
  89. Merckx, R, den Hartog, A., Van Veen, JA. 1985Turnover of root-derived material and related microbial biomass formation in soils of different textureSoil Biol. Biochem.17565569CrossRefGoogle Scholar
  90. Milchunas, DG, Lauenroth, WK, Singh, JS., Cole, CV. 1985Root turnover and production by 14C dilution: implications of carbon partitioning in plantsPlant Soil88353368CrossRefGoogle Scholar
  91. Molina, JAE, Clapp, CE, Linden, DR, Allmaras, RR, Layese, MF, Dowdy, RH., Cheng, HH. 2001Modeling the incorporation of corn (Zea maysL.) carbon from roots and rhizodeposition into soil organic matterSoil Biol. Biochem.338392CrossRefGoogle Scholar
  92. Moore, TR, Trofymow, JA, Taylor, B, Prescott, C, Camire, C, Duschene, L, Fyles, J, Kozak, L, Kranabetter, M, Morrison, I, Siltanen, M, Smith, S, Titus, B, Visser, S, Wein, R., Zoltai, S. 1999Litter decomposition rates in Canadian forestsGlobal Change Biol.57582CrossRefGoogle Scholar
  93. Moretto, AS, Distel, RA., Didone, NG. 2001Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grasslandAppl. Soil Ecol.183137CrossRefGoogle Scholar
  94. Moss, SR., Cotterill, EG. 1985The influence of straw ash on some soil properties that can affect herbicide performanceSoil Tillage Res.5361370CrossRefGoogle Scholar
  95. Neff, JC, Townsend, AR, Gleixner, G, Lehman, SJ, Turnbull, J., Bowman, WD. 2002Variable effects of nitrogen additions on the stability and turnover of soil carbonNature419915917PubMedCrossRefGoogle Scholar
  96. Nierop, KGJ. 1998Origin of aliphatic compounds in a forest soilOrg. Geochem.2910091016CrossRefGoogle Scholar
  97. Nierop, GJK, Naafs, DFW., Verstraten, JM. 2003Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH gradientOrg. Geochem.34719729Google Scholar
  98. Norby, RJ., Cotrufo, MF. 1998A question of litter qualityNature3961718CrossRefGoogle Scholar
  99. Nuttall, WF, Bowren, KE., Campbell, CA. 1986Crop residue management practices and nitrogen and phosphorus fertilizer effects on crop response and some physical and chemical properties of a black chernozem over 25years in a continuous wheat rotationCan. J. Soil Sci.66159171Google Scholar
  100. Oades, JM. 1978Mucilages at the root surfaceJ. Soil Sci.29116Google Scholar
  101. Oades, JM. 1984Soil organic matter and structural stability: Mechanisms and implications for managementPlant Soil76319337CrossRefGoogle Scholar
  102. Oades JM 1995 An overview of processes affecting the cycling of organic carbon in soils. In The Role of Non-Living Organic Matter in the Earth’s Carbon Cycle. Eds Gzepp and CHSonntag. pp.293–303. Dahlem Workshop Reports, John Wiley, New YorkGoogle Scholar
  103. Parfitt, RL, Percival, HJ, Dahlgren, RA., Hill, LF. 1997Soil and solution chemistry under pasture and radiata pine in New ZealandPlant Soil191279290CrossRefGoogle Scholar
  104. Parker, LW, Santos, PF, Phillips, J., Whitford, WG. 1984Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan desert annual, Lepidium lasiocarpumEcol. Monogr.54339360Google Scholar
  105. Parton, WJ, Schimel, CV, Cole, CV., Ojima, DS. 1987Analysis of factors controlling soil organic matter levels in Great Plain grasslandsSoil Sci. Soc. Am. J.5111731179Google Scholar
  106. Paul, EA, Follett, RF, Leavitt, SW, Halvorson, A, Peterson, GA., Lyon, DJ. 1997Radiocarbon dating for determination of soil organic matter pool sizes and dynamicsSoil Sci. Soc.Am. J.6110551067Google Scholar
  107. Paustian, K, Parton, WJ., Persson, J. 1992Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plotsSoil Sci. Soc. Am. J.56476488Google Scholar
  108. Pikul, JL,Jr., Allmaras, RR. 1986Physical and chemical properties of a Haploxeroll after fifty years of residue managementSoil Sci. Soc. Am. J.50214219Google Scholar
  109. Post, WM, Emanuel, WR, Zinke, PJ., Stangenberger, AG. 1982Soil carbon pools and world life zonesNature298156159CrossRefGoogle Scholar
  110. Prasad, R., Power, JF. 1991Crop residue managementAdv. Soil Sci.15204252Google Scholar
  111. Pregitzer, KS, Laskowski, MJ, Burton, AJ, Lessard, VC., Zak, DR. 1998Variation in sugar maple root respiration with root diameter and soil depthTree Physiol.18665670PubMedGoogle Scholar
  112. Puget, P., Drinkwater, LE. 2001Short-term dynamics of root- and shoot-derived carbon from a leguminous green manureSoil Sci. Soc. Am. J.65771779Google Scholar
  113. Rasmussen, PE, Allmaras, RR, Rhode, CR., Roager, NC,Jr. 1980Crop residue influences on soil carbon and nitrogen in a wheat-fallow systemSoil Sci. Soc. Am. J.44596600Google Scholar
  114. Rasse, DP, Smucker, AJM., Santos, D. 2000Alfalfa root and shoot mulching effects on soil hydraulic properties and aggregationSoil Sci. Soc. Am. J.64725731Google Scholar
  115. Rasse, DP, Smucker, AJM., Schabenberger, O. 1999Modifications of soil nitrogen pools in response to alfalfa root systems and shoot mulchAgron. J.91471477Google Scholar
  116. Rasse, DP, Longdoz, B., Ceulemans, R. 2001TRAP: A modelling approach to below-ground carbon allocation in temperate forestsPlant Soil229281293CrossRefGoogle Scholar
  117. Reicosky, DC, Evans, SD, Cambardella, CA, Allmaras, RR, Wilts, AR., Huggins, DR. 2002Continuous corn with moldboard tillage: Residue and fertility effects on soil carbonJ. Soil Water Conserv.57277284Google Scholar
  118. Reid, JB., Goss, MJ. 1981Suppression of decomposition of 14C labelled plant roots in the presence of living roots of maize and perennial ryegrassJ. Soil Sci.33387395Google Scholar
  119. Reid, JB., Goss, MJ. 1982Suppression of decomposition of 14C-labelled plant roots in the presence of living roots of maize and perennial ryegrassJ. Soil Sci.33387395Google Scholar
  120. Reid, JB., Goss, MJ. 1983Growing crops and transformations of 14C-labelled soil organic matterSoil Biol. Biochem.15687691CrossRefGoogle Scholar
  121. Robinson, CH, Michelsen, A, Lee, JA, Whitehead, SJ, Callaghan, TV, Press, MC., Jonasson, S. 1997Elevated atmospheric CO2 affects decomposition of Festuca vivipara (L.) Sm litter and roots in experiments simulating environmental change in two contrasting arctic ecosystemsGlobal Change Biol.33749CrossRefGoogle Scholar
  122. Rovira, P., Vallejo, VR. 2002Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burialSoil Biol. Biochem.34327339CrossRefGoogle Scholar
  123. Rumpel, C, Kögel-Knabner, I., Bruhn, F. 2002Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesisOrg. Geochem.3311311142Google Scholar
  124. Rumpel C, Eusterhues K, Kögel-Knabner I 2004 Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol. Biochem., (in press)Google Scholar
  125. Saggar, S, Parshotam, A, Sparling, GP, Feitham, CW., Hart, PBS. 199614C-labelled ryegrass turnover and residence time in soils varying in clay content and mineralogySoil Biol. Biochem.2816771686CrossRefGoogle Scholar
  126. Sainju, UM, Singh, BP., Whitehead, WF. 2002Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USASoil Tillage Res.63167179CrossRefGoogle Scholar
  127. Sainju UM, Terrill TH, Gelaye S., Singh BP. (2003). Soil aggregation and carbon and nitrogen pools under rhizoma peanut and perennial weeds. Soil Sci. Soc. Am. J. 146–155Google Scholar
  128. Sanchez, FG., Bursey, MM. 2002Transient nature of rhizosphere carbon elucidated by supercritical freon-22 extraction and 13C NMR analysisFor. Ecol. Manage.169177185CrossRefGoogle Scholar
  129. Scharpenseel HW, Becker-Heidmann P, Neue HU., Tsutsuki K. (1989). Bomb-carbon, 14C dating and δ13C measurements as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. Sci. Total Environ. 81/82, 99–110Google Scholar
  130. Scheu, S., Schauermann, J. 1994Decomposition of roots and twigs: Effects of wood type (beech and ash), diameter, site of exposure and macrofauna exclusionPlant Soil1631324Google Scholar
  131. Six, J, Conant RT, , Paul, EA., Paustian, K. 2002Stabilization mechanisms of soil organic matter: implications for C-saturation of soilsPlant Soil241155176CrossRefGoogle Scholar
  132. Six, J, Feller, C, Denef, K, Ogle, SM, Moraes, JC., Albrecht, A. 2002Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillageAgronomie22755775CrossRefGoogle Scholar
  133. Smucker AJM 1984 Carbon utilization and losses by plant root systems. In Roots, Nutrients and Water Flux, and Plant Growth. Eds. SA Barber and DR Bouldin. pp.27–46. ASA spec. pub. 149. Am. Soc. Agron., Madison, WIGoogle Scholar
  134. Soon, YK. 1998Crop residue and fertilizer management effects on some biological and chemical properties of a Dark Grey SolodCan. J. Soil Sci.78707713Google Scholar
  135. Sparling, GS, Cheshire, MV., Mundie, CM. 1982Effect of barley plants on the decomposition of 14C-labelled soil organic matterJ. Soil Sci.3389100Google Scholar
  136. Stemmer, M, Von Lützow, M, Kandeler, E, Pichlmayer, F., Gerzabek, MH. 1999The effect of maize straw placement on mineralization of C and N in soil particle size fractionsEur. J. Soil Sci.19997385Google Scholar
  137. Taylor, JP, Wilson, B, Mills, MS., Burns, RG. 2002Comparison of microbial numbers and enzyrnatic activities in surface soils and subsoils using various techniquesSoil Biol. Biochem.34387401CrossRefGoogle Scholar
  138. Tegelaar, EW, Leeuw, JW., Holloway, PJ. 1989Some mechanisms of flash pyrolysis in naturally occurring polyestersJ. Anal. Appl. Pyrolysis15289295Google Scholar
  139. Tietema, A., Wessel, WW. 1992Gross nitrogen transformations in the organic layer of acid forest ecosystems subjected to increased atmospheric nitrogen inputSoil Biol. Biochem.24943950Google Scholar
  140. Tisdall, JM., Oades, JM. 1979Stabilisation of soil aggregates by the root systems of ryegrassAust. J. Soil Res.17429441CrossRefGoogle Scholar
  141. Tisdall, JM, Smith, SE., Rengasamy, P. 1997Aggregation of soil by fungal hyphaeAust. J. Soil Res.355560CrossRefGoogle Scholar
  142. Torn, MS, Trumbore, SE, Chadwick, OA, Vitousek, PM., Hendricks, DM. 1997Mineral control over soil carbon storage and turnoverNature389170173CrossRefGoogle Scholar
  143. Traoré, O, Groleau-Renaud, V, Plantureux, S, Tubeileh, A., Boeuf-Tremblay, V. 2000Effect of root mucilage and modelled root exudates on soil structureEur. J. Soil Sci.51575581Google Scholar
  144. Dam, D, Veldkamp, E., Breemen, N. 1997Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa RicaBiogeochemistry39343375Google Scholar
  145. Van Hees, PAW, Vinogradoff, SI, Edwards, AC, Godbold, DL., Jones, DL. 2003Low molecular weight organic acid adsorption in forest soils: Effects on soil solution concentrations and biodegradation ratesSoil Biol. Biochem.3510151026Google Scholar
  146. Violante, A, Barberis, E, Pigna, M., Boero, V. 2003Factors affecting the formation, nature and properties of iron precipitation products at the soil-root-interfaceJ. Plant Nutr.2618891908CrossRefGoogle Scholar
  147. Vanlauwe, B, Nwoke, OC, Sanginga, N., Merckx, R. 1996Impact of residue quality on the C and Nmineralization of leaf and root residues of three agroforestry speciesPlant Soil183221231CrossRefGoogle Scholar
  148. Waid JS. (1974). Decomposition of roots. In Biology of Plant Litter Decomposition. Volume1. Eds CH Dickinson and GJF Pugh, pp.175–211, Academic Press, London UKGoogle Scholar
  149. Walton RJ. (1990). Waxes, cutin and suberin. In: Methods in Plant Biochemistry, 4, Eds JL Harwood and JR Bowyer. pp.105–158. Academic Press, LondonGoogle Scholar
  150. Wander, MW., Yang, X. 2000Influence of tillage on the dynamics of loose- and occluded-particulate and humified organic matter fractionsSoil Biol. Biochem.3211511160CrossRefGoogle Scholar
  151. Watt, M, McCully, ME., Canny, MJ. 1994Formation and stabilisation of rhizosheaths ofZea maysLEffect of soil water content. Plant Physiol.106179186Google Scholar
  152. Watt, M, McCully, ME., Jeffree, CE. 1993Plant and bacterial mucilages of the maize rhizosphere: comparison of the soil binding properties and histochemistry in a model systemPlant Soil151151165CrossRefGoogle Scholar
  153. Weaver, JE. 1947Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soilEcology28221240Google Scholar
  154. Weaver, JE, Houghen, VH., Weldon, MD. 1935Relation of root distribution to organic matter in prairie soilBot. Gaz.96389420CrossRefGoogle Scholar
  155. Weichelt, T. 1981Lignin in wurzeln von TriticumZ. Pflanzenemaehr. Bodenk.1451016Google Scholar
  156. Wulfsohn, D., Nyengaard, JR. 1999Simple stereological procedure to estimate the number and dimensions of root hairsPlant Soil209129136CrossRefGoogle Scholar
  157. Xu, JG., Juma, NG. 1994Relations of shootC, rootC and root length with root-releasedC of two barley cultivars and the decomposition of root-releasedC in soilCan. J. Soil Sci.741722Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Daniel P. Rasse
    • 1
    Email author
  • Cornelia Rumpel
    • 1
  • Marie-France Dignac
    • 1
  1. 1.INRA-INAPGUMR Biogéochimie des Milieux ContinentauxThiverval-GrignonFrance

Personalised recommendations