Skip to main content
Log in

Transcriptomic analysis of hub genes regulating albinism in light- and temperature-sensitive albino tea cultivars ‘Zhonghuang 1’ and ‘Zhonghuang 2’

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.

Key message

ZH1 and ZH2 were identified as light- and temperature-sensitive albino tea cultivars. WGCNAidentified hub genes regulating the albino phenotype of ZH1 and ZH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JM, Aro EM (1994) Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: an hypothesis. Photosynth Res 41:315–326

    Article  CAS  PubMed  Google Scholar 

  • Boatwright JL, Pajerowska-Mukhtar K (2013) Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol 14:623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger A, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Okuda K, Peng L, Shikanai T (2011) PROTON GRADIENT REGULATION 3 recognizes multiple targets with limited similarity and mediates translation and RNA stabilization in plastids. Plant J 67:318–327

    Article  CAS  PubMed  Google Scholar 

  • Casal JJ, Qüesta JI (2018) Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol 217:1029–1034

    Article  PubMed  Google Scholar 

  • Chi W, Ma J, Zhang D, Guo J, Chen F, Lu C, Zhang L (2008) The pentratricopeptide repeat protein DELAYED GREENING1 is involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. Plant Physiol 147:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui YL, Jia QS, Yin QQ, Lin GN, Kong MM, Yang ZN (2011) The GDC1 gene encodes a novel ankyrin domain-containing protein that is essential for grana formation in Arabidopsis. Plant Physiol 155:130–141

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Chen H, Zhong W, Wu L, Ye J, Lin C, Zheng X, Lu J, Liang Y (2008) Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant. Afr J Biotechnol 7:1881–1885

    Article  Google Scholar 

  • Du J, Wang S, He C, Zhou B, Ruan Y, Shou H (2017) Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot 68:1955–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants 3:17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Gao M, Hou R, Hu X, Zhang L, Wan X, Wei S (2014) Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem 155:98–104

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Gao W, Liao X, Xiong C, Yu G, Yang Q, Yang C, Ye Z (2019) The tomato WV gene encoding a thioredoxin protein is essential for chloroplast development at low temperature and high light intensity. BMC Plant Biol 19:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerdes L, Bals T, Klostermann E, Karl M, Philippar K, Hünken M, Soll J, Schünemann D (2006) A second thylakoid membrane-localized Alb3/OxaI/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J Biol Chem 281:16632–16642

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Su Q, Lin D, Jiang Q, Xu J, Zhang J, Teng S, Dong Y (2014) The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J Integr Plant Biol 56:400–410

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Horvath D, Chao W, Yang Y, Wang X, Xiao B (2014) Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L). O. Kuntze). Int J Mol Sci 15:22155–22172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Mei J, Gong XD, Xu JL, Zhang JH, Teng S, Lin DZ, Dong YJ (2014) Importance of the rice TCD9 encoding α subunit of chaperonin protein 60 (Cpn60α) for the chloroplast development during the early leaf stage. Plant Sci 215–216:172–179

    Article  PubMed  Google Scholar 

  • Jiang X, Zhao H, Guo F, Shi X, Ye C, Yang P, Liu B, Ni D (2020) Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’. BMC Plant Biol 20:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi P, Nayak L, Misra AN, Biswal B (2013) Response of mature, developing and senescing chloroplasts to environmental stress. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth and senescence. Springer Netherlands, Dordrecht, pp 641–668

    Chapter  Google Scholar 

  • Kim SR, An G (2013) Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions. J Plant Physiol 170:854–863

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg S (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin R, Alonso J, Ecker J, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wang S, Wang P, Gao L, Yang R, Li Y (2020) Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. J Proteom 228:103942

    Article  CAS  Google Scholar 

  • Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Lin D, Kong R, Chen L, Wang Y, Wu L, Xu J, Piao Z, Lee G, Dong Y (2020) Chloroplast development at low temperature requires the pseudouridine synthase gene TCD3 in rice. Sci Rep 10:8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Ye M, Li X, Xing Y, Liu M, Zhang J, Sun X (2022) A novel inhibitor of the jasmonic acid signaling pathway represses herbivore resistance in tea plants. Hortic Res 9:uhab038

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang X, Cao R, Jiao G, Hu S, Shao G, Sheng Z, Xie L, Tang S, Wei X, Hu P (2021) CDE4 encodes a pentatricopeptide repeat protein involved in chloroplast RNA splicing and affects chloroplast development under low-temperature conditions in rice. J Integr Plant Biol 63:1724–1739

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wei K, Zhang C, Liu H, Gong Y, Ye Y, Chen J, Yao M, Chen L, Ma C (2023) The potential effects of chlorophyll-deficient mutation and tree_age on the accumulation of amino acid components in tea plants. Food Chem 411:135527

    Article  CAS  PubMed  Google Scholar 

  • Peter E, Grimm B (2009) GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol Plant 2:1198–1210

    Article  CAS  PubMed  Google Scholar 

  • Pospíšil P (2016) Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science 7:1950

  • Renault H, Bassard JE, Hamberger B, Werck-Reichhart D (2014) Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 19:27–34

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K (2007) The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J 52:512–527

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zheng T, Yu J, Wu T, Wang X, Chen G, Tian Y, Zhang H, Wang Y, Terzaghi W, Wang C, Wan J (2017) TSV, a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytol 215:240–255

    Article  CAS  PubMed  Google Scholar 

  • Tadini L, Peracchio C, Trotta A, Colombo M, Mancini I, Jeran N, Costa A, Faoro F, Marsoni M, Vannini C, Aro EM, Pesaresi P (2020) GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. Plant J 101:1198–1220

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yue C, Cao H, Zhou Y, Zeng J, Yang Y, Wang X (2014) Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biol 14:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Cao H, Chen C, Yue C, Hao X, Yang Y, Wang X (2016) Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes. J Proteom 130:160–169

    Article  CAS  Google Scholar 

  • Wang W, Zheng K, Gong X, Xu J, Huang J, Lin D, Dong Y (2017) The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. Plant Sci 259:1–11

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yao L, Hao X, Li N, Wang Y, Ding C, Lei L, Qian W, Zeng J, Yang Y, Wang X (2019) Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environ Exp Bot 160:45–58

    Article  CAS  Google Scholar 

  • Wang JY, Chen JD, Wang SL, Chen L, Ma CL, Yao MZ (2020) Repressed gene expression of photosynthetic antenna proteins associated with yellow leaf variation as revealed by bulked segregant RNA-seq in tea plant Camellia sinensis. J Agric Food Chem 68:8068–8079

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68:1303–1321

    CAS  PubMed  Google Scholar 

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences 115:E4151-E4158

  • Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y (2016) The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice 9:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Su H, Jin R, Mao Y, Xu A, Cheng H, Wang Y, Meng Q (2020) Shading effects on leaf color conversion and biosynthesis of the major secondary metabolites in the albino tea cultivar Yujinxiang. J Agric Food Chem 68:2528–2538

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Wan S, Chen J, Chen W, Wang Y, Li W, Wang M, Guan R (2023) Mutation to a cytochrome P450-like gene alters the leaf color by affecting the heme and chlorophyll biosynthesis pathways in Brassica napus. Plant J 116:432–445

    Article  CAS  PubMed  Google Scholar 

  • Yu QB, Jiang Y, Chong K, Yang ZN (2009) AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J 59:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu M, Ruan J (2017) Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar. Front Plant Sci 8:291

    PubMed  PubMed Central  Google Scholar 

  • Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang J (2009) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Chen M, Wu Q, Zeng W, Chen Z, Sun W (2022) Combined analysis of lipidomics and transcriptomics revealed the key pathways and genes of lipids in light-sensitive albino tea plant (Camellia sinensis cv. Baijiguan). Front Plant Sci 13:1035119

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Project for Collaborative Promotion of Agricultural Major Technology of Zhejiang Province (2022XTTGCY01-02), the Special Project of Zhejiang Province (2020R52036), the China Agriculture Research System of MOF and MARA (CARS-19-01 A), and the Chinese Academy of Agricultural Sciences through an Innovation Project for Agricultural Sciences and Technology (CAAS-ASTIP-2021-TRICAAS).

Author information

Authors and Affiliations

Authors

Contributions

LW, XCW and YJY participated in the design and coordination of the study. LW, TMD, NNL, JP, YDW, MMH, XYH, JYH and CQD performed the experiments. LW, TMD and XCW analyzed and discussed the data. LW and XCW wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xinchao Wang.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Di, T., Li, N. et al. Transcriptomic analysis of hub genes regulating albinism in light- and temperature-sensitive albino tea cultivars ‘Zhonghuang 1’ and ‘Zhonghuang 2’. Plant Mol Biol 114, 44 (2024). https://doi.org/10.1007/s11103-024-01430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-024-01430-3

Keywords

Navigation