Skip to main content
Log in

miR397-LACs mediated cadmium stress tolerance in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a non-essential heavy metal, assimilated in plant tissue with other nutrients, disturbing the ions’ homeostasis in plants. The plant develops different mechanisms to tolerate the hazardous environmental effects of Cd. Recently studies found different miRNAs that are involved in Cd stress. In the current study, miR397 mutant lines were constructed to explore the molecular mechanisms of miR397 underlying Cd tolerance. Compared with the genetically modified line of overexpressed miR397 (artificial miR397, amiR397), the lines of downregulated miR397 (Short Tandem Target Mimic miR397, STTM miR397) showed more substantial Cd tolerance with higher chlorophyll a & b, carotenoid and lignin content. ICP-OES revealed higher cell wall Cd and low total Cd levels in STTM miR397 than in the wild-type and amiR397 plants.

Further, the STTM plants produced fewer reactive oxygen species (ROS) and lower activity of antioxidants enzymes (e.g., catalase [CAT], malondialdehyde [MDA]) compared with amiR397 and wild-type plants after stress, indicating that silencing the expression of miR397 can reduce oxidative damage. In addition, the different family transporters’ gene expression was much higher in the amiR397 plants than in the wild type and STTM miRNA397. Our results suggest that miR397 plays a role in Cd tolerance in Arabidopsis thaliana. Overexpression of miR397 could decrease Cd tolerance in plants by regulating the expression of LAC 2/4/17, changing the lignin content, which may play an important role in inducing different stress-tolerant mechanisms and protecting the cell from a hazardous condition. This study provides a basis to elucidate the functions of miR397 and the Cd stress tolerance mechanism in Arabidopsis thaliana.

Key message

The miR397 modified lines influence the lignin and Cd content in the plants. The amiR397 plants susceptible to Cd stress have less lignin and high Cd content than STTM miR397 plants, changing the underlying stress regulatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arcuri MLC, Fialho LC, Nunes-Laitz AV, Fuchs-Ferraz MCP, Wolf IR, Valente GT, Marino CL, Maia IG (2020) Genome-wide identification of multifunctional laccase gene family in Eucalyptus grandis: potential targets for lignin engineering and stress tolerance. Trees 34:745–758

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Y, Ali S, Liu S, Zhou J, Tang Y (2022) Characterization of plant laccase genes and their functions. Gene 852:147060

    Article  PubMed  Google Scholar 

  • Bandeoglu E, Eyidogan F, Yucel M, Oktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77

    Article  CAS  Google Scholar 

  • Bao W, Omalley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly-pine xylem. Science 260:672–674

    Article  PubMed  CAS  Google Scholar 

  • Basso MC, Cerrella EG, Cukierman AL (2004) Cadmium uptake by lignocellulosic materials: Effect of lignin content. Sep Sci Technol 39:1163–1175

    Article  CAS  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S et al (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaschek L, Murozuka E, Ménard D, Pesquet E (2022) Different combinations of laccase paralogs non-redundantly control the lignin amount and composition of specific cell types and cell wall layers in Arabidopsis. BioRxiv 53:1

    Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zhang C, Guo H, Hu Y, He Y, Jiang D (2018a) Overexpression of a Miscanthus sacchariflorus yellow stripe-like transporter MsYSL1 enhances resistance of Arabidopsis to cadmium by mediating metal ion reallocation. Plant Growth Regul 85:101–111

    Article  CAS  Google Scholar 

  • Chen X, Ouyang Y, Fan Y, Qiu B, Zhang G, Zeng F (2018b) The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. J Exp Bot 69:5279–5291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Tao H, Wu Y, Xu X (2022) Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L revealed by physiological and proteomics analysis. Sci. Hortic. 305:111371

    Article  CAS  Google Scholar 

  • Chi M, Bhagwat B, Tang G, Xiang Y (2016) Knockdown of polyphenol oxidase gene expression in potato (Solanum tuberosum L) with artificial microRNAs. In: Fett-Neto AG (ed) Biotechnology of plant secondary metabolism: methods and protocols. Springer, pp 163–178

    Chapter  Google Scholar 

  • Dahuja A, Kumar RR, Sakhare A, Watts A, Singh B, Goswami S, Sachdev A, Praveen S (2021) Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol Plant 171(4):785–801

    Article  PubMed  CAS  Google Scholar 

  • De Boer AH, Volkov V (2003) Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell Environ 26(1):87–101

    Article  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2021) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 11:552969

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128

    Article  CAS  Google Scholar 

  • Fang X, Zhao Y, Ma Q, Huang Y, Wang P, Zhang J, Nian H, Yang C (2013) Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS ONE 8(12):e81471

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Jia W, Lv S, Bao H, Miao F, Zhang X, Wang J, Li J, Li D, Zhu C, Li S, Li Y (2018) Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol J 16(2):558–571. https://doi.org/10.1111/pbi.12795

    Article  PubMed  CAS  Google Scholar 

  • Feng YZ, Yu Y, Zhou YF, Yang YW, Lei MQ, Lian JP, He H, Zhang YC, Huang W, Chen YQ (2020) A natural variant of miR397 mediates a feedback loop in circadian rhythm. Plant Physiol 182(1):204–214

    Article  PubMed  CAS  Google Scholar 

  • Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C (2008) AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and upregulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia JS, Dalmolin ÂC, Cortez PA, Barbeira PS, Mangabeira PA, França MG (2018) Short-term cadmium exposure induces gas exchanges, morphological and ultrastructural disturbances in mangrove Avicennia schaueriana young plants. Mar Pollut Bull 131:122–129

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Song Q, Li ZA (2015) Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution. J Ind Eng Chem 23:228–234

    Article  CAS  Google Scholar 

  • Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a Plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28

    Article  PubMed  CAS  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bioinform 9(6):183–199

    Article  CAS  Google Scholar 

  • Guo Z, Yuan X, Li L, Zeng M, Yang J, Tang H, Duan C (2022) Genome-wide analysis of the ATP-binding cassette (ABC) transporter family in Zea mays L and its response to heavy metal stresses. Int J Mol Sci 23(4):2109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta OP, Meena NL, Sharma I, Sharma P (2014) Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol Biol Rep 41:4623–4629

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Wang C, Wagner DC, Gardea-Torresdey JL, He F, Rico CM (2021) Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ Sci Nano 8(5):1196–1210

    Article  CAS  Google Scholar 

  • Hu H, Brown PH (1994) Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol 105(2):681–689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang S, Zhou J, Gao L, Tang Y (2021) Plant miR397 and its functions. Funct Plant Biol 48(4):361–370

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  PubMed  CAS  Google Scholar 

  • Khandal H, Singh AP, Chattopadhyay D (2020) The MicroRNA397b-LACCASE2 module regulates root lignification under water and phosphate deficiency. Plant Physiol 182(3):1387–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  PubMed  CAS  Google Scholar 

  • Li LZ, Tu C, Wu LH, Peijnenburg WJ, Ebbs S, Luo YM (2017a) Pathways of root uptake and membrane transport of Cd (2+) in the zinc/cadmium hyperaccumulating plant sedum plumbizincicola. Environ Toxicol Chem 36:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Li R, Kang C, Song X, Yu L, Liu D, He S, Zhai H, Liu Q (2017b) A ζ-carotene desaturase gene, IbZDS, increases β-carotene and lutein contents and enhances salt tolerance in transgenic sweetpotato. Plant Sci 262:39–51

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Feng J, Chen L, Xu Z, Zhu Y, Wang Y, Xiao Y, Chen J, Zhou Y, Tan H, Zhang L (2019) Genome-wide identification and characterization of Salvia miltiorrhiza laccases reveal potential targets for salvianolic acid B biosynthesis. Front Plant Sci 10:435

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu S, Deng Y, You C, Zhang W, Zhou J, Chen X, Gao L, Tang Y (2020) Genome-wide mRNA and small RNA transcriptome profiles uncover cultivar-and tissue-specific changes induced by cadmium in Brassica parachinensis. Environ Exp Bot 180:104207

    Article  CAS  Google Scholar 

  • Liu S, Li L, Deng Y, Bai Y, Sun C, Huang S, Zhou J, Shi L, Yang X, Li L, Chen X (2022) BrpNAC895 and BrpABI449 coregulate the transcription of the afflux-type cadmium transporter BrpHMA2 in Brassica parachinensis. Hortic. Res. 9:uhac044

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L, Yeh TF (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci 110(26):10848–10853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  PubMed  CAS  Google Scholar 

  • Mani A, Sankaranarayanan K (2022) Natural resistance-associated macrophage proteins (NRAMPs): functional significance of metal transport in plants. Plant metal and metalloid transporters. Singapore, Springer Nature Singapore, pp 91–107

    Chapter  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199

    Article  PubMed  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  PubMed  CAS  Google Scholar 

  • Pérez Chaca MV, Vigliocco A, Reinoso H, Molina A, Abdala G, Zirulnik F, Pedranzani H (2014) Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.) Merr. Acta Physiol Plant 36:2815–2826

    Article  Google Scholar 

  • Qamer Z, Chaudhary MT, Du X, Hinze L, Azhar MT (2021) Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L in response to extreme abiotic conditions. J Cotton Res 4(1):1–9

    Article  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MD, Khan MS (2020) Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 10(63):38379–38403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65(20):6013–6021. https://doi.org/10.1093/jxb/eru340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2011) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22

    Article  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2017) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    PubMed  CAS  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2012) Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity. Plant Physiol Biochem 61:61–70

    Article  PubMed  CAS  Google Scholar 

  • Song XQ, Liu LF, Jiang YJ, Zhang BC, Gao YP, Liu XL, Lin QS, Ling HQ, Zhou YH (2013) Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant 6:768–780

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Jin L, Wang X (2017) Cadmium absorption and transportation pathways in plants. Int J Phytoremediat 19:133–141

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203

    Article  PubMed  CAS  Google Scholar 

  • Swetha C, Basu D, Pachamuthu K, Tirumalai V, Nair A, Prasad M, Shivaprasad PV (2018) Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell 30:2649–2662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taïbi K, Taïbi F, AitAbderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  Google Scholar 

  • Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 58(2):118–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Telfer A (2014) Singlet oxygen production by PSII Under light stress: mechanism, detection and the protective role of beta-carotene. Plant Cell Physiol 55:1216–1223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trchounian A, Petrosyan M, Sahakyan N (2016) Plant cell redox homeostasis and reactive oxygen species. Redox state as a central regulator of plant-cell stress responses. Springer, Cham, pp 25–50

    Chapter  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Meth 3(1):1–12

    Article  Google Scholar 

  • Vatehova-Vivodova Z, Kollarova K, Malovikova A, Liskova D (2018) Maize shoot cell walls under cadmium stress. Environ Sci Pollut Res 25:22318–22322

    Article  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and Plant metal tolerance. FEBS Lett 576:306–312

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C, Zhang YC, Qu LH, Lucas WJ, Wang X, Chen YQ (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12(8):1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Wen JL, Sun SL, Wang HM, Wang SF, Liu QY, Charlton A, Sun RC (2017) Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Ind Crops Prod 108:72–80

    Article  CAS  Google Scholar 

  • Wang P, Yang B, Wan H, Fang X, Yang C (2018) The differences of cell wall in roots between two contrasting soybean cultivars exposed to cadmium at young seedlings. Environ Sci Pollut Res 25:29705–29714

    Article  CAS  Google Scholar 

  • Wang X, Gao W, Zhao P, Yu C, Liu H, Nie Z, Qin S, Li C (2019) Changes to wheat seedling root morphology in response to cadmium stress. J Agro-Environ Sci 38(6):1218–1225

    Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Sklodowska A, Ruszczynska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789

    Article  PubMed  CAS  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64(14):4271–4287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y-J, Cheng L-M, Liu Z-H (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172:632–639

    Article  CAS  Google Scholar 

  • Yao N, Greenberg JT (2006) Arabidopsis accelerated cell death2 modulates programmed cell death. Plant Cell 18(2):397–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2006) Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls. J Plant Res 119:189–194

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Culhaoglu T, Pollet B, Melin C, Denoue D, Barriere Y, Baumberger S, Méchin V (2011) Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J Agricult Food Chem 59(18):10129–10135

    Article  CAS  Google Scholar 

  • Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31(9):848

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S (2015) Identification of jasmonic acid- associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J Exp Bot 66(15):4653–4667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168. https://doi.org/10.1093/jxb/erq237

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by Shenzhen Natural Science Fund (the Stable Support Plan Program, 20220804115333001), Natural Science Foundation of Guangdong province (2020A1515010309), Chinese National Key R & D Project for Synthetic Biology (2018YFA0902500), National Natural Science Foundation of China (32273118), Guangdong Key R & D Project (2022B1111070005), Shenzhen Special Fund for Sustainable Development (KCXFZ20211020164013021) and Shenzhen University 2035 Initiative to Dr. Zhangli Hu.

Author information

Authors and Affiliations

Authors

Contributions

SA, SH, and YT designed, analyzed, and prepared the manuscript. SA, SH, and JZ assisted with experiments. YB, YL, LS, SL, and ZH evaluated data and revised the manuscript. All authors contributed to the manuscript and approved the submitted version.

Corresponding author

Correspondence to Yulin Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3148 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Huang, S., Zhou, J. et al. miR397-LACs mediated cadmium stress tolerance in Arabidopsis thaliana. Plant Mol Biol 113, 415–430 (2023). https://doi.org/10.1007/s11103-023-01369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-023-01369-x

Keywords

Navigation