Skip to main content
Log in

The GZnC1 variant from common wild rice influences grain Zn content

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Zinc (Zn) deficiency, caused by inadequate Zn intake in the human diet, has serious health implications. Rice (Oryza sativa) is the staple food in regions with a high incidence of Zn deficiency, so raising Zn levels in rice grain could help alleviate Zn deficiency. The wild relatives of cultivated rice vary widely in grain Zn content and thus are suitable resources for improving this trait. However, few loci underlying grain Zn content have been identified in wild rice relatives. Here, we identified a major quantitative trait locus for grain Zn content, Grain Zn Content 1 (qGZnC1), from Yuanjiang common wild rice (Oryza rufipogon Griff.) using map-based cloning. Down-regulating GZnC1 expression reduced the grain Zn content, whereas the presence of GZnC1 had the opposite effect, indicating that GZnC1 is involved in grain Zn content in rice. Notably, GZnC1 is identical to a previously reported gene, EMBRYO SAC ABORTION 1 (ESA1), involved in seed setting rate. The mutation in GZnC1/ESA1 at position 1819 (T1819C) causes delayed termination of protein translation. In addition, GZnC1 is specifically expressed in developing panicles. Several genes related to Zn-transporter genes were up-regulated in the presence of GZnC1. Our results suggest that GZnC1 activates Zn transporters to promote Zn distribution in panicles. Our work thus sheds light on the genetic mechanism of Zn accumulation in rice grain and provides a new genetic resource for improving Zn content in rice.

Key message

We identified an allele from the rice progenitor Oryza rufipogon, GZnC1, that influences grain zinc content. This allele is pleiotropic and is identical to EMBRYO SAC ABORTION 1, which is implicated in decreased seed setting rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed in this study are available from the corresponding author on reasonable request.

References

  • Anuradha K, Agarwal S, Rao YV, Rao K, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition Study Group (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–451

    Article  PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutrition Bulletin 32:S31–S40

    Article  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Che J, Yokosho K, Yamaji N, Ma JF (2019) A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol 181:276–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZQ, Huang XQ, Zhang YZ, Qian J, Yang MZ, Wu CJ, Liu JF (2005) Diversity in the content of some nutritional components in husked seeds of three wild rice species and rice varieties in Yunnan Province of China. J Integr Plant Biol 47:1260–1270

    Article  CAS  Google Scholar 

  • Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA, Tesoro F, Stangoulis J, Reinke R, Swamy BPM (2019) Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. Crop Journal 7:560–572

    Article  Google Scholar 

  • Dixit S, Singh UM, Abbai R, Ram T, Singh VK, Paul A, Virk P, Kumar A (2019) Identification of genomic region(s) responsible for high iron and zinc content in rice. Sci Rep 9:8136

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle JJT, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gaikwad KB, Singh N, Kaur P, Rani S, Prashanth BH, Singh K (2021) Deployment of wild relatives for genetic improvement in rice (Oryza sativa). Plant Breed 140:23–52

    Article  CAS  Google Scholar 

  • Gao SP, Xiao YH, Xu F, Gao XK, Cao SY, Zhang FX, Wang GD, Sanders D, Chu CC (2019) Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol 224:202–215

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan LB, Fu YC, Sun CQ (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Chander S, Ortiz R, Menkir A, Gedil M (2018) Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front Plant Sci 9:937

    Article  PubMed  PubMed Central  Google Scholar 

  • Guttieri MJ, Stein RJ, Waters BM (2013) Nutrient partitioning and grain yield of TaNAM-RNAi wheat under abiotic stress. Plant Soil 371:573–591

    Article  CAS  Google Scholar 

  • Hou JJ, Cao CH, Ruan YN, Deng YY, Liu YX, Zhang K, Tan LB, Zhu ZF, Cai HW, Liu FX, Sun HY, Gu P, Sun CQ, Fu YC (2019) ESA1 is involved in embryo sac abortion in interspecific hybrid progeny of rice. Plant Physiol 180:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou JJ, Chen H, Fang YZ, Zhu Y, Han B, Sun CQ, Fu YC (2021) An Agrobacterium-mediated non-antibiotic selection-based transformation system for rice (Oryza sativa ssp. indica) cultivar “93-11” successfully produces TAC1-silenced transgenic plants. In Vitro Cell Dev Biol - Plant 57:786–795

    Article  CAS  Google Scholar 

  • Impa SM, Morete MJ, Ismail AM, Schulin R, Johnson-Beebout SE (2013) Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J Exp Bot 64:2739–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa R, Iwata M, Taniko K, Monden G, Miyazaki N, Orn C, Tsujimura Y, Yoshida S, Ma JF, Ishii T (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS ONE 12:e0187224

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong OY, Lee JH, Jeong EG, Chun A, Bombay M, Banzon Ancheta M, Ahn SN (2020) Analysis of QTL responsible for grain iron and zinc content in doubled haploid lines of rice (Oryza sativa) derived from an intra-japonica cross. Plant Breed 139:344–355

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, van Keulen H, Zhao M, Jin LN, Stomph TJ (2008) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann App Biol 153:135–147

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami Y, Bhullar NK (2018) Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J Integr Plant Biol 60:1181–1198

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Jain S, Jain RK (2014) Linkage mapping for grain iron and zinc content in F2 population derived from the cross between PAU201 and Palman 579 in rice (Oryza sativa L.). Cereal Res Commun 42:389–400

    Article  CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    Article  CAS  PubMed  Google Scholar 

  • Lei GJ, Yamaji N, Ma JF (2021) Two metallothionein genes highly expressed in rice nodes are involved in distribution of Zn to the grain. New Phytol 229:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Maganti S, Swaminathan R, Parida A (2020) Variation in iron and zinc content in traditional rice genotypes. Agric Res 9:316–328

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara M, Miyazaki N, Monden G, Taniko K, Lim S, Iwata M, Ishii T, Ma JF, Ishikawa R (2021) Role of qGZn9a in controlling grain zinc concentration in rice, Oryza sativa L. Theor Appl Genet 134:3013–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad A (2014) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28:357–363

    CAS  Google Scholar 

  • Ricachenevsky FK, Sperotto RA (2016) Into the wild: Oryza species as sources for enhanced nutrient accumulation and metal tolerance in rice. Front Plant Sci 7:974

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF (2015) nodelocalized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84:374–384

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Lee HS, Jin SR, Ko D, Martinoia E, Lee Y, An G, Ahn SN (2015) Rice PCR1 influences grain weight and Zn accumulation in grains. Plant Cell Environ 38:2327–2339

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA (2013) Zn/Fe remobilization from vegetative tissues to rice seeds: should I stay or should I go? Ask Zn/Fe supply! Front Plant Sci. https://doi.org/10.3389/fpls.2013.00464

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Waldow VA, Müller ALH, Dressler VL, Fett JP (2013) Rice grain Fe, Mn and Zn accumulation: how important are flag leaves and seed number? Plant Soil Environ 59:262–266

    Article  CAS  Google Scholar 

  • Sun MM, Hong HC, Lee KS, Cao GL, Yu YJ, Han LZ (2006) Progress of genetic research on trace minerals content in rice seed. Scientia Agricultura Sinica 39:1947–1955

    Google Scholar 

  • Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, Reinke R, Slamet-Loedin IH (2016) Advances in breeding for high grain zinc in rice. Rice 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan LB, Liu FX, Xue W, Wang G, Ye S, Zhu ZF, Fu YC, Wang XK, Sun CQ (2007) Development of Oryza rufipogon and O. sativa introgressed lines and assessment for yield-related quantitative trait loci. J Integr Plant Biol 49:871–884

    Article  CAS  Google Scholar 

  • Tan LT, Zhu YX, Fan T, Peng C, Wang JR, Sun L, Chen CY (2019) OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun 512:112–118

    Article  CAS  PubMed  Google Scholar 

  • Tan LT, Qu MT, Zhu YX, Peng C, Wang JR, Gao DY, Chen CY (2020) ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol 183:1235–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tewari R, Bailes E, Bunting KA, Coates JC (2010) Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20:470–481

    Article  CAS  PubMed  Google Scholar 

  • Tian SQ, Liang S, Qiao K, Wang FH, Zhang YX, Chai TY (2019) Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). J Hazard Mater 380:120853

    Article  CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AA, Tohme J, Barry G, Slamet-Loedin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucl Acids Res 40(15):e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang DD, Yang ZH, Jiang S, Qu JN, He W, Liu ZM, Xing JJ, Ma YC, Lin QL, Yu F (2021) Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Sci China Life Sci 64:294–310

    Article  CAS  PubMed  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7:e50568

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Lu LL, Yang XE, Feng Y, Wei YY, Hao HL, Stoffella PJ, He ZL (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  • Xu Q, Zheng TQ, Hu X, Cheng LR, Xu JL, Shi YM, Li ZK (2015) Examining two sets of introgression lines in rice (Oryza sativa L) reveals favorable alleles that improve grain Zn and Fe concentrations. PLoS ONE 10:e0131846

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Ma JF (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Li YT, Liu ZH, Tian JJ, Liang LM, Qiu Y, Wang G, Du Q, Cheng D, Cai H, Shi L, Xu F, Lian XA (2020) A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant J 103:1695–1709

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock J, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute.

  • Zhang M, Pinson SRM, Tarpley L, Huang XY, Lahner B, Yakubova E, Baxter I, Guerinot ML, Salt DE (2014) Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (NSFC) (grant no. 30771319); the Science and Technology Innovative Team in Fujian Academy of Agricultural Sciences (CXTD2021008-3, 2021011-1); and the 5511 Collaborative Innovation Project for Fujian Province (XTCXGC2021020).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. managed the project, analyzed the data and revised the paper. JH performed the experiments, analyzed the data, and wrote and revised the paper. HC helped to perform the experiments, analyzed the data, and wrote and revised the paper. KZ helped to perform the experiments and revised the paper. WL, CC, YR, YD, YL and XY helped to perform the experiments. CS provided the experimental platform and the introgression lines.

Corresponding author

Correspondence to Yongcai Fu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of the country.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Chen, H., Zhang, K. et al. The GZnC1 variant from common wild rice influences grain Zn content. Plant Mol Biol 111, 263–273 (2023). https://doi.org/10.1007/s11103-022-01325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01325-1

Keywords

Navigation