Skip to main content
Log in

How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape?

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars.

Abstract

Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acevedo A, Brodsky L, Andino R (2014) Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505(7485):686–690

    CAS  PubMed  Google Scholar 

  • Adams IP, Braidwood LA, Stomeo F, Phiri N, Uwumukiza B, Feyissa B, Mahuku G, Wangi A, Smith J, Mumford R, Boonham N (2017) Characterising maize viruses associated with maize lethal necrosis symptoms in Sub Saharan Africa. bioRxiv 1, 161489

    Google Scholar 

  • Aragona M, Minio A, Ferrarini A, Valente MT, Bagnaresi P, Orrù L, Tononi P, Zamperin G, Infantino A, Valè G, Cattivelli L (2014) De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici. BMC Genom 15(1):1–12

    Google Scholar 

  • Asai S, Ayukawa Y, Gan P, Masuda S, Komatsu K, Shirasu K, Arie T (2019) High-quality draft genome sequence of Fusarium oxysporum f. sp. cubense strain 160527, a causal agent of Panama disease. Microbiol Resourc Announce 8(29):e00654-e719

    Google Scholar 

  • Asai S, Ayukawa Y, Gan P, Shirasu K (2021) Draft genome resources for Brassicaceae pathogens Fusarium oxysporum f. sp. raphani and Fusarium oxysporum f. sp. rapae. Molecular Plant-Microbe Interactions

  • Atsumi G, Sekine KT, Kobayashi K (2015) A new method to isolate total dsRNA. Methods Mol Biol 1236:27–37

    CAS  PubMed  Google Scholar 

  • Ayukawa Y, Asai S, Gan P, Tsushima A, Ichihashi Y, Shibata A, Komatsu K, Houterman PM, Rep M, Shirasu K, Arie T (2021) A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Communications Biology 4(1):1–12

    Google Scholar 

  • Back CG, Lee SY, Lee BJ, Yea MC, Kim SM, Kang IK, Cha JS, Jung HY (2015) Development of a species-specific PCR assay for three Xanthomonas species, causing bulb and flower diseases, based on their genome sequences. Plant Pathol J 31:212–218. https://doi.org/10.5423/PPJ.OA.04.2015.0049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bali S, Hu S, Vining K, Brown CR, Majtahedi H, Zhang L, Gleason C, Sathuvalli V (2021) Nematode Genome Announcement: draft genome of Meloidogyne chitwoodi, an economically important pest of potato in the Pacific Northwest. Molecular Plant-Microbe Interactions

  • Barba M, Hadidi A (2015) An overview of plant pathology and application of next-generation sequencing technologies. CAB Rev 10(005):1–21

    Google Scholar 

  • Barreto SS, Hallwass M, Aquino OM, Inoue-Nagata AK (2013) A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in central Brazil. Phytopathology 103(5):436–444

    CAS  PubMed  Google Scholar 

  • Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS, Davis-Richardson A, Canepa R, Triplett EW, Faith JJ, Sebra R, Schadt EE (2018) Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat Biotechnol 36(1):61–69

    CAS  PubMed  Google Scholar 

  • Belmas E, Briand M, Kwasiborski A, Colou J, N’Guyen G, Iacomi B, Grappin P, Campion C, Simoneau P, Barret M, Guillemette T (2018) Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43. Genome Announc 6(6):e01559-e1617

    PubMed  PubMed Central  Google Scholar 

  • Belser C, Baurens FC, Noel B, Martin G, Cruaud C, Istace B, Yahiaoui N, Labadie K, Hřibová E, Doležel J, Lemainque A (2021) Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol 4(1):1–12

    Google Scholar 

  • Booher NJ, Carpenter SC, Sebra RP, Wang L, Salzberg SL, Leach JE, Bogdanove AJ (2015) Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships. Microb Genom 1:4

    Google Scholar 

  • Bronzato Badial A, Sherman D, Stone A, Gopakumar A, Wilson V, Schneider W, King J (2018) Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Dis 102(8):1648–1652

    PubMed  Google Scholar 

  • Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    CAS  PubMed  Google Scholar 

  • Buermans HP, Vossen RH, Anvar SY, Allard WG, Guchelaar HJ, White SJ, den Dunnen JT, Swen JJ, van der Straaten T (2017) Flexible and scalable full-length CYP2D6 long amplicon PacBio sequencing. Hum Mutat 38(3):310–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalupowicz L, Dombrovsky A, Gaba V, Luria N, Reuven M, Beerman A, Lachman O, Dror O, Nissan G, Manulis-Sasson S (2019) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68(2):229–238

    CAS  Google Scholar 

  • Chen Z, Erickson DL, Meng J (2021) Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses. Genomics 113(3):1366–1377

    CAS  PubMed  Google Scholar 

  • Clark MB, Wrzesinski T, Garcia AB, Hall NA, Kleinman JE, Hyde T, Weinberger DR, Harrison PJ, Haerty W, Tunbridge EM (2020) Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry 25(1):37–47

    CAS  PubMed  Google Scholar 

  • Cohen SP, Luna EK, Lang JM, Ziegle J, Chang C, Leach JE, Le-Saux MF, Portier P, Koebnik R, Jacobs JM (2020) High-quality genome resource of Xanthomonas hyacinthi generated via long-read sequencing. Plant Dis 104(4):1011–1012. https://doi.org/10.1094/PDIS-11-19-2393-A

    Article  PubMed  Google Scholar 

  • Cornelis S, Gansemans Y, Vander Plaetsen AS, Weymaere J, Willems S, Deforce D, Van Nieuwerburgh F (2019) Forensic tri-allelic SNP genotyping using nanopore sequencing. Forensic Sci Int Genet 38:204–210

    CAS  PubMed  Google Scholar 

  • Cui X, Liang Z, Shen L, Zhang Q, Bao S, Geng Y (2017) 5-Methylcytosine RNA methylation in Arabidopsis thaliana. Mol Plant 10:1387–1399. https://doi.org/10.1016/j.molp.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Herlihy JH, Bombarely A, McDowell JM, Haak DC (2019) Draft assembly of Phytophthora capsici from long-read sequencing uncovers complexity. Mol Plant Microbe Interact 32(12):1559–1563

    CAS  PubMed  Google Scholar 

  • Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D, Linning R (2016) Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 7:361–376. https://doi.org/10.1534/g3.116.032797

    Article  CAS  PubMed Central  Google Scholar 

  • de Jong LC et al (2017) Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events. Breast Cancer Res 19:127

    PubMed  PubMed Central  Google Scholar 

  • Dal Molin A, Minio A, Griggio F, Delledonne M, Infantino A, Aragona M (2018) The genome assembly of the fungal pathogen Pyrenochaeta lycopersici from Single-Molecule Real-Time sequencing sheds new light on its biological complexity. PLoS ONE 13(7):e0200217

    Google Scholar 

  • Della Bartola M, Byrne S, Mullins E (2020) Characterization of potato virus Y isolates and assessment of nanopore sequencing to detect and genotype potato viruses. Viruses 12(4):478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, Mohr I, Wilson AC (2019) Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun 10(1):1–3

    Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    CAS  PubMed  Google Scholar 

  • Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, Richards CS, Ward PA, Nelson DL (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8:88–94

    CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    CAS  PubMed  Google Scholar 

  • Faino L, Seidl MF, Datema E, van den Berg GC, Janssen A, Wittenberg AH, Thomma BP (2015) Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. Mbio 6(4):e00936-e1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC, Yadav V, Chen H, Malc EP, Wang J, Mieczkowski PA, Kronmiller B (2020) Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genet 16(3):e1008646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fellers JP, Webb C, Fellers MC, Shoup Rupp J, De Wolf E (2019) Wheat virus identification within infected tissue using nanopore sequencing technology. Plant Dis 103(9):2199–2203

    CAS  PubMed  Google Scholar 

  • Filloux D, Fernandez E, Loire E, Claude L, Galzi S, Candresse T, Winter S, Jeeva ML, Makeshkumar T, Martin DP, Roumagnac P (2018) Nanopore-based detection and characterization of yam viruses. Sci Rep 8(1):1–11

    Google Scholar 

  • Flusberg BA et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller CW et al (2016) Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc Natl Acad Sci USA 113:5233–5238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garalde DR et al (2018a) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206

    CAS  PubMed  Google Scholar 

  • Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M et al (2018b) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206. https://doi.org/10.1038/nmeth.4577

    Article  CAS  PubMed  Google Scholar 

  • Gilbert WV et al (2016) Messenger RNA modifications: form, distribution, and function. Science 352:1408–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M et al (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239

    PubMed  PubMed Central  Google Scholar 

  • Jouet A, Saunders DGO, McMullan M, Ward B, Furzer O, Jupe F et al (2019) Albugo candida race diversity, ploidy and host-associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytol 221:1529–1543

    CAS  PubMed  Google Scholar 

  • Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P (2019) Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends plant Sci 24(8):700–724

    Google Scholar 

  • Kobayashi K, Atsumi G, Yamaoka N, Sekine KT (2012) Sequencing-based virus hunting and virus detection. Jpn Agric Res Q 46:123–128

    CAS  Google Scholar 

  • Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120

    CAS  PubMed  Google Scholar 

  • Koutsovoulos GD, Poullet M, Elashry A, Kozlowski DK, Sallet E, Da Rocha M, Perfus-Barbeoch L, Martin-Jimenez C, Frey JE, Ahrens CH, Kiewnick S (2020) Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode. Sci Data 7(1):1–13

    Google Scholar 

  • Krasnov GS, Pushkova EN, Novakovskiy RO, Kudryavtseva LP, Rozhmina TA, Dvorianinova EM, Povkhova LV, Kudryavtseva AV, Dmitriev AA, Melnikova NV (2020) High-quality genome assembly of Fusarium oxysporum f. sp. lini. Front Genet 11:1

    Google Scholar 

  • Lamour KH, Stam R, Jupe J, Huitema E (2012) The oomycete broad-host-range pathogen Phytophthora capsici. Mol Plant Pathol 13:329–337

    PubMed  Google Scholar 

  • Leigh DM, Schefer C, Cornejo C (2020) Determining the suitability of MinION’s direct RNA and DNA amplicon sequencing for viral subtype identification. Viruses 12(8):801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh DM, Peranić K, Prospero S, Cornejo C, Ćurković-Perica M, Kupper Q, Nuskern L, Rigling D, Ježić M (2021) Long-read sequencing reveals the evolutionary drivers of intra-host diversity across natural RNA mycovirus infections. Virus Evol 7(2):101

    Google Scholar 

  • Leiva AM, Siriwan W, Lopez-Alvarez D, Barrantes I, Hemniam N, Saokham K, Cuellar WJ (2020) Nanopore-based complete genome sequence of a Sri Lankan cassava mosaic virus (Geminivirus) strain from Thailand. Microbiol Resour Announce 9(6):e01274-e1319

    CAS  Google Scholar 

  • Levy SE, Myers RM (2016) Advancements in next- generation sequencing. Annu Rev Genomics Hum Genet 17:95–115

    CAS  PubMed  Google Scholar 

  • Li C et al (2016) INC-Seq: accurate single molecule reads using nanopore sequencing. Gigascience 5:34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Tang Y, Fang X, Qiao T, Han S, Zhu T (2020) Whole-genome sequence of Arthrinium phaeospermum, a globally distributed pathogenic fungus. Genomics 112(1):919–929

    CAS  PubMed  Google Scholar 

  • Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J (2021) A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 21(4):1274–1286

    CAS  PubMed  Google Scholar 

  • Liefting LW, Waite DW, Thompson JR (2021) Application of Oxford nanopore technology to plant virus detection. Viruses 13:1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Song T, Fairhead S, Witek K, Jouet A, Jupe F, Witek AI, Karki HS, Vleeshouwers VG, Hein I, Jones JD (2020) Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq). Mol Plant Pathol 21(11):1502–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Hake K, Wang W, Zhao T, Romeis T, Tang D (2017a) CALCIUM-DEPENDENT PROTEIN KINASE5 associates with the truncated NLR protein TIR-NBS2 to contribute to exo70B1-mediated immunity. Plant Cell 29:746–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Mei W, Soltis PS, Soltis DE, Barbazuk WB (2017b) Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol Ecol Resour 17:1243–1256

    CAS  PubMed  Google Scholar 

  • Liu X, Li X, Wen X, Zhang Y, Ding Y, Zhang Y, Gao B, Zhang D (2021) PacBio full-length transcriptome of wild apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genomics 22(1):1–19

    Google Scholar 

  • López-Alvarez D, Leiva AM, Barrantes I, Pardo JM, Dominguez V, Cuellar WJ (2020) Complete genome sequence of the plant pathogen Ralstonia solanacearum strain CIAT-078, isolated in Colombia, obtained using Oxford Nanopore Technology. Microbiol Resour Announce 9(22):e00448-e520

    Google Scholar 

  • Loit K, Adamson K, Bahram M, Puusepp R, Anslan S, Kiiker R, Drenkhan R, Tedersoo L (2019) Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens. Appl Environ Microbiol 85(21):e01368-e1419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell JT, Bentley NB, Bhattarai G, Jenkins JW, Sreedasyam A, Alarcon Y, Bock C, Boston LB, Carlson J, Cervantes K, Clermont K (2021) Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nat Commun 12(1):1–12

    Google Scholar 

  • Lu Z, Guan X, Schmidt CA, Matera AG (2014) RIP-seq analysis of eukaryotic Sm proteins identifies three major categories of Sm-containing ribonucleoproteins. Genome Biol 15(1):1–23

    CAS  Google Scholar 

  • Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM et al (2013) Comparative genomics of a plant-pathogenic fungus, Pyrenophora triticirepentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (bethesda) 3(1):41–63

    CAS  PubMed  Google Scholar 

  • Malar CM, Yuzon JD, Panda A, Kasuga T, Tripathy S (2019) Updated assembly of Phytophthora ramorum pr102 isolate incorporating long reads from PacBio sequencing. Mol Plant Microbe Interact 32(11):1472–1474

    Google Scholar 

  • Mehta D, Hirsch-Hoffmann M, Were M, Patrignani A, Were H, Gruissem W, Vanderschuren H (2018) A new full-length virus genome sequencing method reveals that antiviral RNAi changes geminivirus populations in field-grown cassava. bioRxiv 1:168724

    Google Scholar 

  • Mehetre GT, Leo VV, Singh G, Sorokan A, Maksimov I, Yadav MK, Upadhyaya K, Hashem A, Alsaleh AN, Dawoud TM, Almaary KS (2021) Current developments and challenges in plant viral diagnostics: a systematic review. Viruses 13(3):412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merda D, Briand M, Bosis E, Rousseau C, Portier P, Barret M, Jacques MA, Fischer-Le Saux M (2017) Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol 26:5939–5952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldován N, Tombácz D, Szűcs A, Csabai Z, Balázs Z, Kis E et al (2018a) Third-generation sequencing reveals extensive polycistronism and transcriptional overlapping in a baculovirus. Sci Rep 8:8604. https://doi.org/10.1038/s41598-018-26955-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldován N, Tombácz D, Szűcs A, Csabai Z, Snyder M, Boldogkői Z (2018b) Multi-platform sequencing approach reveals a novel transcriptome profile in pseudorabies virus. Front Microbiol 8:2708

    PubMed  PubMed Central  Google Scholar 

  • Monger WA, Goodfellow HA, Back EJ (2020) First report of Arabis mosaic virus in potato (Solanum tuberosum), identified by nanopore sequencing. New Dis Rep 41:29

    Google Scholar 

  • Moolhuijzen P, See PT, Hane JK, Shi G, Liu Z, Oliver RP et al (2018) Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genom 19(1):279

    Google Scholar 

  • Moolhuijzen P, See PT, Moffat CS (2020) PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis. BMC Genom 21(1):1–12

    Google Scholar 

  • Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K (2019) Transposable elements contribute to fungal genes and impact fungal lifestyle. Sci Rep 9(1):1–10

    CAS  Google Scholar 

  • Naito FY, Melo FL, Fonseca MEN, Santos CA, Chanes CR, Ribeiro BM, Gilbertson RL, Boiteux LS, de Cássia P-C (2019) Nanopore sequencing of a novel bipartite New World begomovirus infecting cowpea. Adv Virol 164(7):1907–1910

    CAS  Google Scholar 

  • Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS (2015) A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: Proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Leeuwenhoek 107:467–485

    PubMed  Google Scholar 

  • Nolin SL et al (2015) Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet Med 17:358–364

    CAS  PubMed  Google Scholar 

  • Ozsolak F, Milos PM (2011) Single-molecule direct RNA sequencing without cDNA synthesis. Wiley Interdiscip Rev RNA 2:565–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White FF, Liu S (2016) Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genom 17:21

    Google Scholar 

  • Pereira-Carvalho RC, Melo F, Ribeiro B, Costa H, Duarte M, Boiteux L, Fonseca M (2019) Identification of Physalis angulata (Solanaceae) as a natural alternative weed host of tomato severe rugose virus in Brazil.

  • Qiao W, Yang Y, Sebra R, Mendiratta G, Gaedigk A, Desnick RJ, Scott SA (2016) Long-read single molecule real-time full gene sequencing of cytochrome P450–2D6. Hum Mutat 37(3):315–323

    CAS  PubMed  Google Scholar 

  • Rand AC et al (2017) Mapping DNA methylation with high- throughput nanopore sequencing. Nat Methods 14:411–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Read AC, Moscou MJ, Zimin AV, Pertea G, Meyer RS, Purugganan MD, Leach JE, Triplett LR, Salzberg SL, Bogdanove AJ (2020) Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genet 16(1):1008571

    Google Scholar 

  • Roberts RJ et al (2013) The advantages of SMRT sequencing. Genome Biol 14:405

    PubMed  PubMed Central  Google Scholar 

  • Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Kadota Y, Gan P, Bino T, Uehara T, Yamaguchi K, Ichihashi Y, Maki N, Iwahori H, Suzuki T, Shigenobu S (2018) High-quality genome sequence of the root-knot nematode Meloidogyne arenaria Genotype A2-O. Genome Announc 6(26):e00519-e618

    PubMed  PubMed Central  Google Scholar 

  • Schmidt MH, Pearson CE (2016) Disease-associated repeat instability and mismatch repair. DNA Repair (amst) 38:117–126

    CAS  PubMed  Google Scholar 

  • Seong HJ, Park HJ, Hong E, Lee SC, Sul WJ, Han SW (2016) Methylome analysis of two Xanthomonas spp. using single-molecule real-time sequencing. Plant Pathol J 32(6):500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Wei C, Li J, Zhang X, Wu Y (2020) Integrated single-molecule long-read sequencing and Illumina sequencing reveal the resistance mechanism of Psathyrostachys huashanica in response to barley yellow dwarf virus-GAV. Phytopathol Res 2(1):1–15

    Google Scholar 

  • Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F, Elkon R et al (2017) Transcription impacts the efficiency of mRNA translation via Co-transcriptional N6-adenosine methylation. Cell 169:e312

    Google Scholar 

  • Smith AM, Jain M, Mulroney L, Garalde DR, Akeson M (2017) Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing. bioRxiv. https://doi.org/10.1101/132274

    Article  Google Scholar 

  • Somvanshi VS, Dash M, Bhat CG, Budhwar R, Godwin J, Shukla RN, Patrignani A, Schlapbach R, Rao U (2021) An improved draft genome assembly of Meloidogyne graminicola IARI strain using long-read sequencing. Gene 1:145748

    Google Scholar 

  • Tan S, Dvorak CM, Murtaugh MP (2019) Rapid, unbiased PRRSV strain detection using MinION direct RNA sequencing and bioinformatics tools. Viruses 11(12):1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL, Coaker G (2017) Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a Gram-positive bacterial pathogen. Mol Plant Microbe Interact 30(10):786–802

    CAS  PubMed  Google Scholar 

  • Thilliez GJ, Armstrong MR, Lim TY, Baker K, Jouet A, Ward B, Van Oosterhout C, Jones JD, Huitema E, Birch PR, Hein I (2019) Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytol 221(3):1634–1648

    PubMed  Google Scholar 

  • Town JR, Wist T, Perez-Lopez E, Olivier CY, Dumonceaux TJ (2018) Genome sequence of a plant-pathogenic bacterium, “Candidatus Phytoplasma asteris” strain TW1. Microbiol Resour Announcem 7(12):e01109-e1118

    Google Scholar 

  • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159

    PubMed  PubMed Central  Google Scholar 

  • Tsai YC, Greenberg D, Powell J, Höijer I, Ameur A, Strahl M, Ellis E, Jonasson I, Pinto RM, Wheeler VC, Amplification-free SML (2017) CRISPR-Cas9 targeted enrichment and SMRT sequencing of repeat-expansion disease causative genomic regions. BioRxiv 1:203919

    Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313(5791):1261–1266

    CAS  PubMed  Google Scholar 

  • van Doorn J, Hollinger TC, Oudega B (2001) Analysis of the type IV fimbrial-subunit gene fimA of Xanthomonas hyacinthi: application in PCR-mediated detection of yellow disease in hyacinths. Appl Environ Microbiol 67:598–607

    PubMed  PubMed Central  Google Scholar 

  • Vandivier LE, Gregory BD (2018) New insights into the plant epitranscriptome. J Exp Bot 69:4659–4665

    CAS  PubMed  Google Scholar 

  • Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JD, Dangl JL, Weigel D, Bemm F (2019) A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178(5):1260–1272

    PubMed  PubMed Central  Google Scholar 

  • Villamor DE, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE (2019) High throughput sequencing for plant virus detection and discovery. Phytopathology 109(5):716–725

    CAS  PubMed  Google Scholar 

  • Wang J, Song L, Jiao Q, Yang S, Gao R, Lu X, Zhou G (2018) Comparative genome analysis of jujube witches’-broom Phytoplasma, an obligate pathogen that causes jujube witches’-broom disease. BMC Genom 19(1):1–12

    Google Scholar 

  • White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10(6):749–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield ZJ, Andino R (2016) Characterization of viral populations by using circular sequencing. J Virol 90(20):8950–8953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wick RR et al (2017) Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 3:e000132

    PubMed  PubMed Central  Google Scholar 

  • Witek K, Jupe F, Witek AI, Baker D, Clark MD, Jones JD (2016) Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol 34(6):656–660

    CAS  PubMed  Google Scholar 

  • Wu JQ, Dong C, Song L, Park RF (2020) Long-read–based de novo genome assembly and comparative genomics of the wheat leaf rust pathogen Puccinia triticina identifies candidates for three avirulence genes. Front Genet 11:521

    PubMed  PubMed Central  Google Scholar 

  • Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell 61(4):507–519

    CAS  PubMed  Google Scholar 

  • Xu L, Seki M (2020) Recent advances in the detection of base modifications using the Nanopore sequencer. J Hum Genet 65(1):25–33

    CAS  PubMed  Google Scholar 

  • Yanagisawa H, Tomita R, Katsu K, Uehara T, Atsumi G, Tateda C, Kobayashi K, Sekine KT (2016) Combined DECS analysis and next-generation sequencing enable efficient detection of novel plant RNA viruses. Viruses 8(3):70

    PubMed  PubMed Central  Google Scholar 

  • Yang M, Duan S, Mei X, Huang H, Chen W, Liu Y, Guo C, Yang T, Wei W, Liu X, He X (2018) The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci Rep 8(1):1–1

    Google Scholar 

  • Zhao L, Zhang H, Kohnen MV, Prasad KV, Gu L, Reddy AS (2019) Analysis of transcriptome and epitranscriptome in plants using PacBio Iso-Seq and nanopore-based direct RNA sequencing. Front Genet 10:253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yang H, Turra D, Zhou S, Ayhan DH, DeIulio GA, Guo L, Broz K, Wiederhold N, Coleman JJ, Donnell KO (2020) The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Commun Biol 3(1):1–2

    PubMed  PubMed Central  Google Scholar 

  • Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, Mudivarti PA (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Zhong J, Jia X, Liu G, Kang Y, Dong M, Zhang X, Li Q, Yue L, Li C, Fu J (2016) Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology. Nucleic Acids Res 44(2):730–743

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Japan Society for the Promotion of Science (JSPS) under the Fund of Grant-in-Aid (project number: 20F20392) for JSPS Fellow Islam Hamim (fellowship ID. F20392).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: IH; Literature search: IH, KK; Writing—original draft preparation: IH Writing—review and editing: IH, KK, KS; Funding acquisition: IH, KK; Supervision: KK.

Corresponding author

Correspondence to Ken Komatsu.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamim, I., Sekine, KT. & Komatsu, K. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape?. Plant Mol Biol 110, 469–484 (2022). https://doi.org/10.1007/s11103-022-01305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01305-5

Keywords

Navigation