Skip to main content
Log in

Transcriptome profiling of cashew apples (Anacardium occidentale) genotypes reveals specific genes linked to firmness and color during pseudofruit development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

We found 34 and 71 key genes potentially involved in flavonoid biosynthesis and cell wall disassembly, respectively, which could be associated with specific peel coloration and softening of each genotype.

Abstract

Cashew apple (Anacardium occidentale) has a great economic importance worldwide due to its high nutritional value, peculiar flavor and aroma. During ripening, the peduncle develops different peel color and becomes quickly fragile due to its oversoftening, impacting its consumers’ acceptance. In view of this, the understanding about its transcriptional dynamics throughout ripening is imperative. In this study, we performed a transcriptome sequencing of two cashew apple genotypes (CCP 76 and BRS 265), presenting different firmness and color peel, in the immature and ripe stages. Comparative transcriptome analysis between immature and ripe cashew apple revealed 4374 and 3266 differentially expressed genes (DEGs) to CCP 76 and BRS 265 genotypes, respectively. These genes included 71 and 34 GDEs involved in the cell wall disassembly and flavonoid biosynthesis, respectively, which could be associated with firmness loss and anthocyanin accumulation during cashew apple development. Then, softer peduncle of CCP 76 could be justified by down-regulated EXP and up-regulation of genes involved in pectin degradation (PG, PL and PAE) and in cell wall biosynthesis. Moreover, genes related to flavonoid biosynthesis (PAL, C4H and CHS) could be associated with early high accumulation of anthocyanin in red-peel peduncle of BRS 265. Finally, expression patterns of the selected genes were tested by real-time quantitative PCR (qRT-PCR), and the qRT-PCR results were consistent with transcriptome data. The information generated in this work will provide insights into transcriptome responses to cashew apple ripening and hence, it will be helpful for cashew breeding programs aimed at developing genotypes with improved quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The sequencing project has been deposited at the SRA database under the accession number PRJNA657300.

References

  • Afzal M, Alghamdi SS, Migdadi HH, Khan MA, Mirza SB, El-Harty E (2020) Legume genomics and transcriptomics: from classic breeding to modern technologies. Saudi J Biol Sci 27:543–555

    Article  CAS  PubMed  Google Scholar 

  • Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55:6076–6093

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Accessed from http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Anders S, Pyl PT, Huber W (2015) HTSeq: a Python framework to work with high throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Bataglion GA, Silva FM, Eberlin MN, Koolen HH (2015) Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chem 180:280–287

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bontempo P, de Masi L, Carafa V, Rigano D, Scisciola L, Iside C, Grassi R, Molinar AM, Aversano R, Nebbioso A, Carputo D, Altucci L (2015) Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte.” J Funct Foods 19:584–593

    Article  CAS  Google Scholar 

  • Brito ES, Araújo MCP, Lin L, Harnly J (2007) Determination of the flavonoid components of cashew apple (Anacardium occidentale L.) by LC-DAD-ESI/MS. Food Chem 105:1112–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Carvajal F, Palma F, Jamilena M, Garrido D (2015) Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit. Postharvest Biol Technol 108:68–77

    Article  CAS  Google Scholar 

  • Carvalho DV, Santos FA, Lima RP, Viana AFSC, Fonseca SGC, Nunes PIG, Melo TS, Gallão MI, Brito ES (2018) Influence of low molecular weight compounds associated to cashew (Anacardium occidentale L.) fiber on lipid metabolism, glycemia and insulinemia of normal mice. Bioact Carbohydr Diet Fibre 13:1–6

    Article  CAS  Google Scholar 

  • Chaves-Silva S, Santos AL, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA (2018) Understanding the genetic regulation of anthocyanin biosynthesis in plants—tools for breeding purple varieties of fruits and vegetables. Phytochemistry 153:11–27

    Article  CAS  PubMed  Google Scholar 

  • Choi D, Cho H, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511–518

    CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cotroneo PS, Russo MP, Ciuni M, Recupero GR, Piero ARL (2006) Quantitative real-time reverse transcriptase-PCR profiling of anthocyanin biosynthetic genes during orange fruit ripening. J Am Soc Hortic Sci 131:537–543

    Article  CAS  Google Scholar 

  • Cunha AG, Brito ES, Moura CFH, Ribeiro PRV, Miranda MRA (2017) UPLC-qTOF-MS/MS-based phenolic profile and their biosynthetic enzyme activity used to discriminate between cashew apple (Anacardium occidentale L.) maturation stages. J Chromatogr B 1051:24–32

    Article  CAS  Google Scholar 

  • Das I, Arora A (2017) Post-harvest processing technology for cashew apple—a review. J Food Eng 194:87–98

    Article  CAS  Google Scholar 

  • Deshpande AB, Anamika K, Jha V, Chidley HG, Oak PS, Kadoo NY, Pujari KH, Giri AP, Gupta VS (2017) Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics. Sci Rep 7:1–19

    Article  CAS  Google Scholar 

  • Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, Miranda RS, Silva LMA, Moura CFH, Filho EGA, Canuto KM, Costa JH (2019) Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. Plant Mol Biol 101:269–296

    Article  PubMed  CAS  Google Scholar 

  • Eklof JM, Brumer H (2010) The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol 153:456–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang Z, Hou Z, Wang S, Liu Z, Wei S, Zhang Y, Song J (2019) Yin J (2019) Transcriptome analysis reveals the accumulation mechanism of anthocyanins in buckwheat (Fagopyrum esculentum Moench) cotyledons and flowers. Int J Mol Sci 20:1493

    Article  CAS  PubMed Central  Google Scholar 

  • FAOSTAT (2018) Food and Agriculture Organization of the United Nations (FAO). FAOSTAT, Italy

    Google Scholar 

  • Figueiredo RW, Lajolo FM, Alves RE, Filgueiras HAC, Araújo NCC (2001) Alterações de firmeza, pectinas e enzimas pectinolíticas durante o desenvolvimento e maturação de pedúnculos de cajueiro anão precoce (Anacardium occidentale L. var nanum) CCP 76. Proc Am Soc Hortic Sci Trop 43:82–86

    Google Scholar 

  • Figueiredo RW, Lajolo FM, Alves RE, Filgueiras HAC (2002) Physical–chemical changes in early dwarf cashew pseudofruits during development and maturation. Food Chem 77:343–347

  • Filho EA, Silva LM, Lima Y, Ribeiro P, Silva E, Zocolo G, Canuto K, Morais S, Castro AC, Brito E (2019) Metabolomic variability of different genotypes of cashew by LC-Ms and correlation with near-infrared spectroscopy as a tool for fast phenotyping. Metabolites 9:121

    Article  CAS  Google Scholar 

  • Fornalé S, Lopez E, Salazar-Henao JE, Fernández-Nohales P, Rigau J, Caparros-Ruiz D (2014) AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol 55:507–516

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Gago JA, Posé S, Muñoz-Blanco J, Quesada MA, Mercado JA (2009) The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening. Plant Signal Behav 4:766–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protoc Food Anal Chem 1:F1.2.1-F1.2.13

    Google Scholar 

  • Gonzalez M, Salazar E, Cabrera S, Olea P, Carrasco B (2016) Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development. Gene Expr Patterns 21:54–62

    Article  CAS  PubMed  Google Scholar 

  • Gordon A, Friedrich M, Matta VM, Moura CFH, Marx F (2012) Changes in phenolic composition, ascorbic acid and antioxidant capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits 67:267–276

    Article  CAS  Google Scholar 

  • Goulao LF, Oliveira CM (2008) Cell wall modification during fruit ripening: when a fruit is not the fruit. Trends Food Sci Technol 19:4–25

    Article  CAS  Google Scholar 

  • Griesser M, Vitzthum F, Fink B, Bellido ML, Raasch C, Munoz-Blanco J, Schwab W (2008) Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria x ananassa) achene and receptacle. J Exp Bot 59:2611–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewold E (2006) The science of flavonoids. Springer, New York, p 274

    Book  Google Scholar 

  • Hellemans J, Mortier G, Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Bermúdez S, Redondo-Nevado J, Muñoz-Blanco J, Caballero JL, López-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirakosyan A, Gutierrez E, Ramos Solano B, Seymour EM, Bolling SF (2018) The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chem 252:142–146

    Article  CAS  PubMed  Google Scholar 

  • Lampugnani ER, Khan GA, Somssich M, Persson S (2018) Building a plant cell wall at a glance. J Cell Sci 131:jcs207373

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S (2014) Transcriptional control of flavonoid biosynthesis. Fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal Behav 9:e27522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu GL, Guo HH, Sun YM (2012) Optimization of the extraction of anthocyanins from the fruit skin of Rhodomyrtus tomentosa (Ait.) Hassk and identification of anthocyanins in the extract using high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). Int J Mol Sci 13:6292–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shi Z, Maximova S, Payne MJ, Guiltinan MJ (2013) Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase and leucoanthocyanidin reductase. BMC Plant Biol 13:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes MMA, Moura CFH, Aragão FAZ, Cardoso TG, Filho JE (2011) Caracterização física de pedúnculos de clones de cajueiro anão precoce em diferentes estádios de maturação. Rev Ciênc Agron 42:914

    Article  Google Scholar 

  • Lopes MMA, Miranda MRA, Moura CFH, Filho JE (2012) Bioactive compounds and total antioxidant capacity of cashew apples (Anacardium occidentale L.) during the ripening of early dwarf cashew clones. Cienc Agrotechnol 36:325

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo P, Ning G, Wang Z, Shen Y, Jin H, Li P, Huang S, Zhao J, Bao M (2016) Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants. Front Plant Sci 13:1257

    Google Scholar 

  • Ma L, Sun L, Guo Y, Lin H, Liu Z, Li K, Guo X (2020) Transcriptome analysis of table grapes (Vitis vinifera L.) identified a gene network module associated with berry firmness. PLoS ONE 15:e0237526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marc A, Ange KD, Achille TF, Georges AN (2012) Phenolic profile of cashew apple juice (Anacardium occidentale L.) from Yamoussoukro and Korhogo (Côte d’Ivoire). J Appl Biosci 49:3331–3338

    Google Scholar 

  • Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  CAS  PubMed  Google Scholar 

  • Mercado JA, Pliego-Alfaro F, Quesada MA (2011) Fruit shelf life and potential for its genetic improvement. Breeding for fruit quality. Wiley, Hoboken, pp 81–104

    Chapter  Google Scholar 

  • Michodjehoun-Mestres L, Souquet J, Fulcrand H, Bouchut C, Reynes M, Brillouet J (2009) Monomeric phenols of cashew apple (Anacardium occidentale L.). Food Chem 112:851–857

    Article  CAS  Google Scholar 

  • Miedes E, Herbers K, Sonnewald U, Lorences EP (2010) Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits. J Agric Food Chem 58:5708–5713

    Article  CAS  PubMed  Google Scholar 

  • Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, Cellini F, Petrozza A, Vigouroux J, Lahaye M, Carriero F, Bendahmane A (2016) Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Sci 242:195–202

    Article  CAS  PubMed  Google Scholar 

  • Molina-Hidalgo FJ, Franco AR, Villatoro C, Medina-Puche L, Mercado JA, Hidalgo MA, Monfort A, Caballero JL, Muñoz-Blanco J, Blanco-Portales R (2013) The strawberry (Fragaria× ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae. J Exp Bot 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Moriguchia T, Kita M, Ogawa K, Tomono Y, Endo T, Omura M (2002) Flavonol synthase gene expression during citrus fruit development. Physiol Plant 114:251–258

    Article  Google Scholar 

  • Moura CFH, Figueiredo RW, Alves RE, Silva ED, Araujo PGL, Maciel VT (2010) Increasing shelf life of early dwarf cashew tree peduncle through reduction of storage temperature. Ciencia Agrotechnol 34:140–145

    Article  Google Scholar 

  • Oliveira NN, Mothé CG, Mothé MG, Oliveira LG (2020) Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. J Food Sci Technol 57:12–21

    Article  PubMed  Google Scholar 

  • Paniagua C, Posé S, Morris VJ, Kirby AR, Quesada MA, Mercado JA (2014) Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann Bot 114:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paniagua C, Blanco-Portales R, Barceló-Muñoz M, García-Gago JA, Waldron KW, Quesada MA, Muñoz-Blanco J, Mercado JÁ (2016) Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. J Exp Bot 67:619–631

    Article  CAS  PubMed  Google Scholar 

  • Pei M, Gu C, Zhang S (2019) Genome-wide identification and expression analysis of genes associated with peach (Prunus persica) fruit ripening. Sci Hortic 246:317–327

    Article  CAS  Google Scholar 

  • Popper ZA, Fry SC (2005) Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. Ann Bot 96:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posé S, Paniagua C, Matas AJ, Gunning AP, Morris VJ, Quesada MA, Mercado JA (2019) A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends Food Sci Technol 87:47–58

    Article  CAS  Google Scholar 

  • Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci 47:1–19

    Article  CAS  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    Article  CAS  PubMed  Google Scholar 

  • Putta S, Yarla NS, Kumar KE, Lakkappa DB, Kamal MA, Scotti L, Scotti MT, Ashraf GM, Rao BSB, Reddy GV, Tarasov VV, Imandi SB, Aliev G (2018) Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr Med Chem 25:5347–5371

    Article  CAS  PubMed  Google Scholar 

  • Qian M, Ni J, Niu Q, Bai S, Bao L, Li J, Sun Y, Zhang D, Teng Y (2017) Response of miR156-SPL module during the red peel coloration of bagging-treated Chinese sand pear (Pyrus pyrifolia Nakai). Front Physiol 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Queiroz C, Silva AJR, Lopes MLM, Fialho E, Valente-Mesquita VL (2011) Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale L.) after processing. Food Chem 125:128–132

    Article  CAS  Google Scholar 

  • Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rouholamin S, Zahedi B, Nazarian-Firouzabadi F, Saei A (2015) Expression analysis of anthocyanin biosynthesis key regulatory genes involved in pomegranate (Punica granatum L.). Sci Hortic 186:84–88

    Article  CAS  Google Scholar 

  • Sathya TA, Khan M (2014) Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry. J Food Sci 79:2149–2156

    Article  CAS  Google Scholar 

  • Savadi S, Muralidhara BM, Preethi P (2020) Advances in genomics of cashew tree: molecular tools and strategies for accelerated breeding. Tree Genet 16:1–15

    Google Scholar 

  • Schweiggert RM, Vargas E, Conrad J, Hempel J, Gras CC, Ziegler JU, Mayer A, Jiménez V, Esquivel P, Carle R (2016) Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chem 200:274–282

    Article  CAS  PubMed  Google Scholar 

  • Seymour G, Tucker GA, Poole M, Giovannoni J (2013) The molecular biology and biochemistry of fruit ripening. Wiley, Oxford, pp 177–179

    Book  Google Scholar 

  • Shah S, Hashmi MS (2020) Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Hortic Environ Biotechnol 61:279–289

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Abbott JA, Gross KC (2002) Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol 129:1755–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza KO, Viana RM, Oliveira LS, Moura CFH, Miranda MRA (2016) Preharvest treatment of growth regulators influences postharvest quality and storage life of cashew apples. Sci Hortic 209:53–60

    Article  CAS  Google Scholar 

  • Srivastava S, Singh RK, Pathak G, Goel R, Asif MH, Sane AP, Sane VA (2016) Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. “Dashehari”) unravels ripening associated genes. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  • Sun L, Zhang Y, Cui H, Zhang L, Sha T, Wang C, Fan C, Luan F, Wang X (2020) Linkage mapping and comparative transcriptome analysis of firmness in watermelon (Citrullus lanatus). Front Plant Sci 11:831

    Article  PubMed  PubMed Central  Google Scholar 

  • Swain T, Hillis WE (1959) Phenolic constituents of Prunus domestica in quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Talasila U, Shaik KB (2015) Quality, spoilage and preservation of cashew apple juice: a review. J Food Sci Technol 52:54–62

    Article  CAS  Google Scholar 

  • Tamiello-Rosa CS, Cantu-Jungles TM, Iacomini M, Cordeiro LM (2019) Pectins from cashew apple fruit (Anacardium occidentale): Extraction and chemical characterization. Carbohydr Res 483:107752

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Han Z, Zhang J, Hu Y, Song T, Yao Y (2015) The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples. Sci Rep 5:12228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong TMD, Sheldon J, Stiegelmeyer S, Perez L et al (2016) Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34:950–952

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, Preter K, Pattyn F, Poppe B, Vanroy N, Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR by geometric averaging of multiple internal control genes. Genome Biol 3:1

    Article  Google Scholar 

  • Vasconcelos MS, Gomes-Rochette NF, Oliveira MLM, Nunes-Pinheiro DCS, Tomé AR, Sousa FYM, Pinheiro FGM, Moura CFH, Miranda MRA, Mota EF, Melo DF (2015) Anti-inflammatory and wound healing potential of cashew apple juice (Anacardium occidentale L.) in mice. Exp Biol Med 240:1648–1655

    Article  CAS  Google Scholar 

  • Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus SE, Bagheri HM, Perez-Fons L, Fraser PD, Foster T, Fray R, Knox JP, Seymour GB (2019) Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol 179:544–557

    CAS  PubMed  Google Scholar 

  • Witasari LD, Huang F, Hoffmann T, Rozhon W, Fry SC, Schwab W (2019) Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes Fv XTH 9 and Fv XTH 6 accelerates fruit ripening. Plant J 100:1237–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Guo J, Zhou Q, Xin Y, Wang G, Xu L (2018) De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba. Ind Crops Prod 124:226–235

    Article  CAS  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Sun C, Wang P, Shan L, Cai C, Zhang B, Zhang W, Li X, Ferguson I, Chen K (2008) Expression of expansin genes during postharvest lignification and softening of ‘Luoyangqing’and ‘Baisha’loquat fruit under different storage conditions. Postharvest Biol Technol 49:46–53

    Article  CAS  Google Scholar 

  • Yang Y, Yao G, Yue W, Zhang S, Wu J (2015) Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Front Plant Sci 6:795

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Huang W, Xiong F, Xian Z, Su D, Ren M, Li Z (2017) Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol J 15:1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X (2012) Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics 13:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, Davis AR, Luan F (2017) Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics 18:1

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TGA and SA are grateful to CAPES for the Doctoral fellowship. AERO is grateful to FAPESP for the Postdoctoral fellowship (Grant Numbers 2019/22579-7 and 2013/08216-2). JHC is thankful to CNPq for the Researcher fellowship (Grant Number 309795/2017-6). The authors are grateful to Embrapa Agroindústria Tropical for providing the cashew apples. Genome sequence data of cashew trees used in this article was produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with the user community.

Funding

This research was supported by INCT, CNPq, FAPESP and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is a part of PhD study of TAG, she conceptualized, designed the study, and finalized the manuscript. MFRO and AERO helped in bioinformatics analysis. KDCS helped in qRT-PCR analysis and visualization of the obtained results. CPS contributed to the interpretation of results and reviewed the manuscript. CFHM was involved in management and orientation of cashew apple harvest. SA contributed to the development of scientific writing, final organization and reviewed the manuscript. JHC, supervised all stages of this work and submitted the manuscript.

Corresponding author

Correspondence to José Hélio Costa.

Ethics declarations

Conflict of interest

All authors read the manuscript and declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11103_2022_1257_MOESM1_ESM.docx

Supplementary file1 (DOCX 95 KB)—Supplementary. geNorm analyses. (A) Average expression stability values of candidate reference genes and (B) determination of the optimal number of candidate reference genes for normalization

Supplementary file2 (XLS 5556 KB)—Number of filters reads mapped to cashew tree genome

11103_2022_1257_MOESM3_ESM.docx

Supplementary file3 (DOCX 16 KB)—Primer sequence, optimal annealing temperature and amplicon size of each evaluated gene in this study

Supplementary file4 (XLS 6776 KB)—Normalized counts in Fragments Per Kilobase Million (FPKM)

11103_2022_1257_MOESM5_ESM.doc

Supplementary file5 (DOC 45 KB)—Summary of sequencing and data mapping. Total raw reads; total filter reads; Q30 percentage: proportion of nucleotides with quality value > 30; GC content percentage: GC content of total nucleotides; Mapped reads (%)

11103_2022_1257_MOESM6_ESM.xlsx

Supplementary file6 (XLSX 1275 KB)—Identified differentially expressed genes (DEGs) to each studied comparison in this study. The first column of table shows gene ID followed by its base mean, log2 fold change value, P-value, adjusted P-value and differential expression (up or downregulated). BI: BRS 265 immature; BR: BRS 265 ripe; CI: CCP 76 immature; CR: CCP 76 ripe

11103_2022_1257_MOESM7_ESM.xlsx

Supplementary file7 (XLSX 168 KB)—Common and exclusive differentially expressed genes (DEGs) during CCP 76 and BRS 265 cashew apple development. The table consists of gene ID and its identification in relation to Arabidopsis thaliana to each studied comparison. BI: BRS 265 immature; BR: BRS 265 ripe; CI: CCP 76 immature; CR: CCP 76 ripe

11103_2022_1257_MOESM8_ESM.xlsx

Supplementary file8 (XLSX 212 KB)—GO enrichment analysis during the cashew apple development. The table consists of name and ID of GO term, besides its gene ontology classes: biological process (BP), cellular component (CC) and molecular function (MF). Over and under represented P-value calculated to each GO term based on information present in fourth and fifth columns. Only those GO terms with over represented P-value < 0.05 are shown. The fourth column lists the number of up and downregulated genes to the studied comparisons assigned to each GO term. The fifth column lists the number of background genes mapped to each GO term. The last column shows the ID of DEGs enriched each GO term

11103_2022_1257_MOESM9_ESM.xlsx

Supplementary file9 (XLSX 95 KB)—Enriched metabolic pathways represented during the cashew apple development according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The first three columns show the name, database and ID of pathways. The fourth column lists the number of up or downregulated genes to the studied comparisons assigned to each pathway. The fifth column lists the number of background genes mapped to each pathway. The last columns list the P-value and corrected P-value of the statistical test, genes names and hyperlink to visualization of genes pathway in website. BI: BRS 265 immature; BR: BRS 265 ripe; CI: CCP 76 immature; CR: CCP 76 ripe

11103_2022_1257_MOESM10_ESM.xlsx

Supplementary file10 (XLSX 134 KB)—Gene ID, transcription factor family, best hit in Arabidopsis thaliana, e-value and description for the best hit in each studied comparison in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germano, T.A., de Oliveira, M.F.R., Aziz, S. et al. Transcriptome profiling of cashew apples (Anacardium occidentale) genotypes reveals specific genes linked to firmness and color during pseudofruit development. Plant Mol Biol 109, 83–100 (2022). https://doi.org/10.1007/s11103-022-01257-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01257-w

Keywords

Navigation