Skip to main content

Advertisement

Log in

Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phosphorus (P) is essential for cellular processes like respiration, photosynthesis, biosynthesis of membrane phospholipids, etc. To cope with P deficiency stress, plants adopt reprograming of the expression of genes involved in different metabolic/signaling pathways for survival, growth, and development. Plants use transcriptional, post-transcriptional, and/or post-translational machinery to achieve P homeostasis. Several transcription factors (TFs), miRNAs, and P transporters play important roles in P deficiency tolerance; however, the underlying mechanisms responsible for P deficiency tolerance remain poorly understood. Studies on P starvation/deficiency responses in plants at early (seedling) stage of growth have been reported but only a few of them focused on molecular responses of the plant at advanced (tillering or reproductive) stage of growth. To decipher the strategies adopted by rice at tillering stage under P deficiency stress, a pair of contrasting genotypes [Pusa-44 (a high-yielding, P deficiency sensitive cultivar) and its near-isogenic line (NIL-23, P deficiency tolerant) for Pup1 QTL] was used for morphophysiological, biochemical, and molecular analyses. Comparative analyses of shoot and root tissues from 45-day-old plants grown hydroponically under P sufficient (16 ppm) or P deficient (4 ppm) medium confirmed some of the known morphophysiological responses. Moreover, RNA-seq analysis revealed the important roles of phosphate transporters, TFs, auxin-responsive proteins, modulation in the cell wall, fatty acid metabolism, and chromatin architecture/epigenetic modifications in providing P deficiency tolerance to NIL-23, which were brought in due to the introgression of the Pup1 QTL in Pusa-44. This study provides insights into the molecular functions of Pup1 for P deficiency tolerance, which might be utilized to improve P-use efficiency of rice for better productivity in P deficient soils.

Key message

Introgression of Pup1 QTL in high-yielding rice cultivar modulates mainly phosphate transporters, TFs, auxin-responsive proteins, cell wall structure, fatty acid metabolism, and chromatin architecture/epigenetic modifications at tillering stage of growth under phosphorus deficiency stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

RNA-seq raw data are available at NCBI Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) under the BioProject IDs: PRJNA667189 and PRJNA796019.

References

  • Abel S, Ticconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Physiol Plant 115:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ai P, Sun S, Zhao J, Fan X, Xin X, Guo Q et al (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  CAS  PubMed  Google Scholar 

  • Amanullah, (2015) Specific leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. J Plant Nutr 38:1694–1708

    Article  CAS  Google Scholar 

  • Anila M, Mahadevaswamy HK, Bhadana VP, Brajendra Hajira SK, Pranathi K et al (2014) Marker-assisted introgression of Pup1, a major QTL associated with tolerance to low soil phosphorus into the elite rice variety MTU1010. Prog Res 9:735–738

    Google Scholar 

  • Baldwin JC, Karthikeyan AS, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125:728–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bariola PA, Howard CJ, Taylor CP, Verburg MT, Jaglan VD, Green PJ (1994) The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J 6:673–685

    Article  CAS  PubMed  Google Scholar 

  • Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F (2021) Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells 10:1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M et al (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat JF, Gaymard F (2013) Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J Biol Chem 288:22670–22680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürglin TR, Afolter M (2016) Homeodomain proteins: an update. Chromosoma 125:497

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Xie W, Lian X (2013) Comparative analysis of differentially expressed genes in rice under nitrogen and phosphorus starvation stress conditions. Plant Mol Biol Report 31:160–173

    Article  CAS  Google Scholar 

  • Carstensen A, Szameitat AE, Frydenvang J, Husted S (2019) Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil 434:79–91

    Article  CAS  Google Scholar 

  • Chacón-López A, Ibarra-Laclette E, Sánchez-Calderón L, Gutiérrez-Alanis D, Herrera-Estrella L (2011) Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation. Plant Signal Behav 6:382–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang MX, Gu M, Xia Y, Dai X, Dai C, Zhang J et al (2019) OsPHT1;3 mediates uptake translocation and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol 179:656–670

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Wu K, Schmidt W (2015) The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis. Sci Rep 5:15708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Fang C, Yuan H, Wang S, Wu Y, Liu X, Zhang Y, Luo L (2015) Interaction between carbon metabolism and phosphate accumulation is revealed by a mutation of a cellulose synthase-like protein, CSLF6. J Exp Biol 25:57–67

    Google Scholar 

  • Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S et al (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciereszko I, Johansson H, Kleczkowski LA (2005) Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J Plant Physiol 162:343–353

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang Y, Yang A, Zhang WH (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q-W, Luo X-D, Chen Y-L, Zhou Y, Zhang FT, Hu B-L, Xie J-K (2018) Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufpogon Grif.). Biol Res 51:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58

    Article  CAS  PubMed  Google Scholar 

  • Dia X, Wang Y, Zhang WH (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67:947–960

    Article  CAS  Google Scholar 

  • Dodds PN, Clarke AE, Newbigin E (1996) Molecular characterization of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. Plant Mol Biol 31:227–238

    Article  CAS  PubMed  Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebvre DD (1989) Phosphate starvation inducible ‘Bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90:1275–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Mazlouzi M, Morel C, Robert T, Yan B, Mollier A (2020) Phosphorus uptake and partitioning in two durum wheat cultivars with contrasting biomass allocation as affected by different P supply during grain filling. Plant Soil 449:179–192

    Article  CAS  Google Scholar 

  • Filstrup CT, Downing JA (2017) Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters 7:385–400

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Martín AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamuyao R, Chin HJ, Tanaka JP, Pesaresi P, Catausan S, Dalid C et al (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorous deficiency. Nature 488:535–541

    Article  CAS  PubMed  Google Scholar 

  • Gho Y-S, Choi H, Moon S, Song MY, Park HE, Kim D-H, Ha S-H, Jung K-H (2020) Phosphate-starvation-inducible S-like RNase genes in rice are involved in phosphate source recycling by RNA decay. Front Plant Sci 11:585561

    Article  PubMed  PubMed Central  Google Scholar 

  • Grierson PF (1992) Organic acids in the rhizosphere of Banksia integrifolia L.f. Plant Soil 144:259–265

    Article  CAS  Google Scholar 

  • Gu M, Zhang J, Li H, Meng D, Li R, Dai X et al (2017) Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. J Exp Bot 68:3603–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC et al (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  CAS  PubMed  Google Scholar 

  • Hanson WC (1950) The photometric determination of phosphorus in fertilizers using the phosphovanadomolybdate complex. J Sci Food Agric 1:172–173

    Article  CAS  Google Scholar 

  • Henry JB, Perkins-Veazie P, McCall I, Whipker BE (2019) Restricted phosphorus fertilization increases the betacyanin concentration and red foliage coloration of Alternanthera. J Am Soc Hortic Sci 144:264–273

    Article  CAS  Google Scholar 

  • Heuer S, Lu X, Chin JH, Tanaka JP, Kanamori H, Matsumoto T et al (2009) Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J 7:456–467

    Article  CAS  PubMed  Google Scholar 

  • Hillwig MS, Lebrasseur ND, Green PJ, Macintosh GC (2008) Impact of transcriptional, ABA-dependent, and ABA-independent pathways on wounding regulation of RNS1 expression. Mol Genet Genomics 280:249–261

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) Different methods of chlorophyll extraction. Can J Bot 57:1332–1332

    Article  CAS  Google Scholar 

  • Hufnagel B, de Sousa SM, Assis L et al (2014) Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166:659–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 145:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CB, Holloway BR, Smith H, Grierson D (1973) Isoenzymes of acid phosphatase in germinating peas. Planta 115:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kumar S, Mohapatra T (2021a) Interaction between macro- and micro-nutrients in plants. Front Plant Sci 12:665583

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S (2018) Environmental stress, food safety, and global health: biochemical, genetic and epigenetic perspectives. Med Saf Glob Health 7:145

    Article  Google Scholar 

  • Kumar S (2019) Genome editing to epigenome editing: towards unraveling the enigmas in developmental biology. Trends Dev Biol 12:1–8

    Article  Google Scholar 

  • Kumar S (2020) Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int J Food Sci Agric 4:367–378

    Google Scholar 

  • Kumar S, Chinnusamy V, Mohapatra T (2018) Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet 9:640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Pallavi, Chugh C, Seem K, Kumar S, Vinod KK, Mohapatra T (2021b) Characterization of contrasting rice (Oryza sativa L) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. BMC Plant Biol 21:282

  • Lauer MJ, Pallardy SG, Belvins DG, Randall DD (1989) Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.). Plant Physiol 91:848–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Liu C, Lian X (2010) Gene expression profiles in rice roots under low phosphorus stress. Plant Mol Biol 72:423–432

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Wang J, Zhao J, Tian J, Liao H (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21:59–66

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ et al (2009) Genome-wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra P, Pandey BK, Giri J (2016) Comparative morphophysiological analyses and molecular profiling reveal Pi-efficient strategies of a traditional rice genotype. Front Plant Sci 6:1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Muchhal US, Raghothama KG (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA 96:5868–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudge SR, Rae AL, Diatlof E, Smith FW (2002) Expression analysis suggests novel roles for members of the PHT1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    Article  CAS  PubMed  Google Scholar 

  • Neelam K, Thakur S, Neha YIS, Kumar K, Dhaliwal SS, Singh K (2017) Novel alleles of phosphorus-starvation tolerance 1 gene (PSTOL1) from Oryza rufpogon confers high phosphorus uptake efficiency. Front Plant Sci 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139:129–143

    Article  CAS  PubMed  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    Article  CAS  PubMed  Google Scholar 

  • Pariasca-Tanaka J, Satoh K, Rose T, Mauleon R, Wissuwa M (2009) Stress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiency. Rice 2:167–185

    Article  Google Scholar 

  • Park MR, Baek SH, de Los Reyes BG, Yun SJ, Hasenstein KH (2012) Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. J Plant Physiol 169:193–205

    Article  CAS  PubMed  Google Scholar 

  • Péret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  PubMed  CAS  Google Scholar 

  • Pieters AJ, Paul MJ, Lawlor DW (2001) Low sink demand limits photosynthesis under Pi deficiency. J Exp Bot 52:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book 1:e0024

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy YAN, Prasad TG, Udaykumar M (1995) Relationship between leaf area index, specific leaf weight and assimilation rate in rice genotypes. Madras Agric J 82:616–617

    Google Scholar 

  • Ren P, Meng Y, Li B, Ma X, Si E, Lai Y et al (2018) Molecular mechanisms of acclimatization to phosphorus starvation and recovery underlying full-length transcriptome profiling in barley (Hordeum vulgare L.). Front Plant Sci 9:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribot C, Wang Y, Poirier Y (2008) Expression analyzes of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta 227:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    Article  CAS  PubMed  Google Scholar 

  • Roveda-Hoyos G, Moreno-Fonseca L (2019) Physiological and antioxidant responses of Cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agron Colomb 37:3–11

    Article  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secco D, Jabnoune M, Walker H, Shou H, Wu P, Poirier Y et al (2013) Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. Plant Cell 25:4285–4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Borah P, Meena MK, Bindraban P, Pandey R (2018) Evaluation of genotypic variation for growth of rice seedlings under optimized hydroponics medium. Indian J Genet 78:292–301

    Google Scholar 

  • Shukla T, Kumar S, Khare R, Tripathi RD, Trivedi PK (2015) Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front Plant Sci 6:898

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Song L, Zhang Y, Zheng Z, Liu D (2016) Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol 170:499–514

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tian J, Wang C, Zhang Q, He X, Whelan J, Shou H (2012) Overexpression of OsPAP10, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. J Integr Plant Biol 54:631–639

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. N Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vasconcelos MJV, Figueiredo JEF, Raghothama KG (2018) Expression analysis of anthocyanin gene induced under phosphorus starvation in maize genotypes with contrasting phosphorus use efficiency. Genet Mol Res 17:GMR18036

    Article  CAS  Google Scholar 

  • Voxeur A, Höfte H (2016) Cell wall integrity signaling in plants: “To grow or not to grow that’s the question.” Glycobiology 26:950–960

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Qin Q, Pan J, Sun L, Sun Y, Xue Y, Song K (2019) Transcriptome analysis in roots and leaves of wheat seedlings in response to low phosphorus stress. Sci Rep 9:19802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li Q, Yuan W, Cao Z, Qi B, Kumar S et al (2016a) The cytosolic Fe–S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci Rep 6:26443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YS, Jensen LS, Magid J (2016b) Differential responses of root and root hair traits of spring wheat genotypes to phosphorus deficiency in solution culture. Plant Soil Environ 62:540–546

    Article  CAS  Google Scholar 

  • Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F et al (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57:2049–2059

    Article  CAS  PubMed  Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A et al (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Li Y, Liu Y, He L, Liu A, Wen J, Mysore KS, Tadege M, Chen J (2021) The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Plant Mol Biol 105:193–204

    Article  PubMed  CAS  Google Scholar 

  • Yong-Villalobos L, Cervantes-Pérez SA, Gutiérrez-Alanis D, Gonzáles Morales S, Martínez O, Herrera-Estrella L (2016) Phosphate starvation induces DNA methylation in the vicinity of cis-acting elements known to regulate the expression of phosphate-responsive genes. Plant Signal Behav 11:e1173300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan H, Liu D (2008) Signaling components involved in plant responses to phosphate starvation. J Integr Plant Biol 50:849–859

    Article  CAS  PubMed  Google Scholar 

  • Yugandhar P, Nallamothu V, Panigrahy M, Tipireddy S, Bhadana VP, Voleti SR et al (2018) Nagina 22 mutants tolerant or sensitive to low P in field show contrasting response to double P in hydroponics and pots. Arch Agron Soil Sci 64:1975–1987

    Article  CAS  Google Scholar 

  • Zahraeifard S, Foroozani M, Sepehri A, Oh D-H, Wang G, Mangu V et al (2018) Rice H2A.Z negatively regulates genes responsive to nutrient starvation but promotes expression of key housekeeping genes. J Exp Bot 69:4907–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Jiang F, Shen Y, Zhan Q, Bai B, Chen W, Chi Y (2019) Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol 19:306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JM, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SuK acknowledges funding from the Extramural Research Grant of the Division of Crop Sciences, Indian Council of Agricultural Research, New Delhi, India.

Funding

The research was carried out with financial support from Extramural Research Grant [18(3)/2018-O&P] from the Indian Council of Agricultural Research, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

SuK and TM conceptualize and supervised the experiments. AA and KS carried out the experiments. SaK performed bioinformatic analyses. KKV developed the near isogenic lines, evaluated them and provided the best performers for experimentation. SuK, KS and SaK wrote the manuscript. TM provided ideas for revision; SuK and KS checked the revised manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interest. Santosh Kumar is employed at the Decode Genomics Private Limited, New Delhi, and the work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Agrawal, A., Seem, K. et al. Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage. Plant Mol Biol 109, 29–50 (2022). https://doi.org/10.1007/s11103-022-01254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01254-z

Keywords

Navigation