Skip to main content
Log in

Multiple and integrated functions of floral C-class MADS-box genes in flower and fruit development of Physalis floridana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

This work reveals potentially multiple and integrated roles in flower and fruit development of floral C-class MADS-box genes in Physalis.

Abstract

The Physalis fruit features a morphological novelty, the Chinese lantern. Floral C-class MADS-domain AGAMOUS-like (AG-like) proteins can interact with the identified regulators of this novel structure. However, the developmental role of the floral C-class genes is unknown in Physalis. Here, we characterized two AG-like genes from Physalis floridana, designated PFAG1 and PFAG2. The two paralogous genes shared around 61.0% of sequence identity and had similar expression domains, with different expression levels in the floral and berry development. However, the genes had distinct expression patterns in leaf and calyx development. Protein–protein interaction analyses revealed that PFAG1 and PFAG2 could commonly or specifically dimerize with certain floral MADS-domain proteins as well as non-MADS-domain proteins involved in various floral developmental processes. Gene downregulation analyses demonstrated that PFAG1 may repress PFAG2, but PFAG2 did not affect PFAG1. Downregulating PFAG1 led to incomplete floral homeotic variation in the stamens and carpels, and alteration of petal coloration pattern, while downregulating PFAG2 did not result in any floral homeotic variation. PFAG1 affected pollen maturation, while PFAG2 affected female fertility. However, simultaneously downregulating PFAG1 and PFAG2 caused loss of the complete C-function, indicating that the two PFAG genes interact to determine the identity and functionality of androecia and gynoecia organs. Their potential roles in regulating fruit size and the Chinese lantern are also discussed. Our results reveal functional divergence of floral C-class MADS-box genes in Physalis, demonstrating that they may play multiple and integrated roles in flower and fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the manuscript or the supplementary materials. The sequences reported in this work have been deposited in the NCBI GenBank under the accession numbers: KC794937 (PFAG1), MZ147807 (PFAG2) and MZ147808 (PFMBP3).

References

  • Abraham-Juarez MJ, Schrager-Lavelle A, Man J, Whipple C, Handakumbura P, Babbitt C, Bartlett M (2020) Evolutionary variation in MADS-box dimerization affects floral development and protein abundance in maize. Plant Cell 32:3408–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsemão-Pires E, Andrade LR, Sachetto-Martins G (2013) Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem 67:120–125

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95

    Article  CAS  PubMed  Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493

    Article  CAS  PubMed  Google Scholar 

  • Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Kato N, Wang W, Li J, Chen X (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers K, Bhide AS, Tekleyohans DG, Wittkop B, Snowdon RJ, Becker A (2016) The MADS box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana. PLoS ONE 11:e0165075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Gao HH, Li J, Wang L, Zhang JS, He CY (2020) Transcriptomic variation of the flower-fruit transition in Physalis and Solanum. Planta 252:28

    Article  CAS  PubMed  Google Scholar 

  • Garceau DC, Batson MK, Pan IL (2017) Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species. Planta 246:313–321

    Article  CAS  PubMed  Google Scholar 

  • Giménez E, Castañeda L, Pineda B, Pan IL, Moreno V, Angosto T, Lozano R (2016) TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Mol Biol 91:513–531

    Article  PubMed  CAS  Google Scholar 

  • Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T (2015) Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168:1036–1048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giménez E, Pineda B, Capel J, Antón MT, Atarés A, Pérez-Martín F, García-Sogo B, Angosto T, Moreno V, Lozano R (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS ONE 5:e14427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR (2010) Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han P, García-Ponce B, Fonseca-Salazar G, Alvarez-Buylla ER, Yu H (2008) AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway. Plant J 55:253–265

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Aharoni A, Bouzayen M, Zouine M (2015) Auxin response factor SlARF2 is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLoS Genet 11:e1005649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He CY, Saedler H (2005) Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA 102:5779–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He CY, Saedler H (2007) Hormonal control of the inflated calyx syndrome, a morphological novelty, in Physalis. Plant J 49:935–946

    Article  CAS  PubMed  Google Scholar 

  • He CY, Sommer H, Grosardt B, Huijser P, Saedler H (2007) PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. Mol Biol Evol 24:1229–1241

    Article  CAS  PubMed  Google Scholar 

  • Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, Gerats T, Vandenbussche M (2012) Redefining C and D in the petunia ABC. Plant Cell 24:2305–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang N-C, Tien H-C, Yu T-S (2020) The movement of a leaf-derived mobile AGL24 mRNA specifies floral organ identity in Arabidopsis. https://biorxiv.org/abs/2020.11.16.385153

  • Huang Z, Shi T, Zheng B, Yumul RE, Liu X, You C, Gao Z, Xiao L, Chen X (2017) APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol 215:1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA (2014) Transcriptional control of fleshy fruit development and ripening. J Exp Bot 65:4527–4541

    Article  CAS  PubMed  Google Scholar 

  • Kater MM, Colombo L, Franken J, Busscher M, Masiero S, Van Lookeren Campagne MM, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer EM, Jaramillo MA, di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms. Genetics 166:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laitinen RA, Broholm S, Albert VA, Teeri TH, Elomaa P (2006) Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biol 6:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Yang J, Shang X, Lv W, Xia C, Wang C, Feng J, Cao Y, He H, Li L, Ma L (2019) SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. New Phytol 224:321–335

    Article  CAS  PubMed  Google Scholar 

  • Li ZC, He CY (2015) Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size. J Exp Bot 66:257–270

    Article  PubMed  CAS  Google Scholar 

  • Liao Y-T, Lin S-S, Lin S-J, Sun W-T, Shen B-N, Cheng H-P, Lin C-P, Ko T-P, Chen Y-F, Wang H-C (2019) Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and MADS transcription factors. Plant J 100:706–719

    Article  CAS  PubMed  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, Chen W, Wang Y, Ge P, Zhang J, Zhou G, Zheng W, Ye Z, Zhang Y (2020) GREEN STRIPE, encoding methylated TOMATO AGAMOUS-LIKE 1, regulates chloroplast development and Chl synthesis in fruit. New Phytol 228:302–317

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Dinh TT, Li D, Shi B, Li Y, Cao X, Guo L, Pan Y, Jiao Y, Chen X (2014) AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant J 80:629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Shen X, Liu Z, Zhang D, Liu W, Liang H, Wang Y, He Z, Chen F (2018) Isolation and characterization of AGAMOUS-Like genes associated with double-flower morphogenesis in Kerria japonica (Rosaceae). Front Plant Sci 9:959

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12:e1001835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Mizunoe Y, Kubota S, Kanno A, Ozaki Y (2015) Morphological variation and AGAMOUS-like gene expression in double flowers of Cyclamen persicum Mill. Horticult J 84:140–147

    Article  CAS  Google Scholar 

  • Morel P, Heijmans K, Ament K, Chopy M, Trehin C, Chambrier P, Rodrigues Bento S, Bimbo A, Vandenbussche M (2018) The floral C-lineage genes trigger nectary development in Petunia and Arabidopsis. Plant Cell 30:2020–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsuka T, Koishi K (2018) Molecular characterization of a double-flower mutation in Matthiola incana. Plant Sci 268:39–46

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    Article  CAS  Google Scholar 

  • Pan IL, McQuinn R, Giovannoni JJ, Irish VF (2010) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61:1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994a) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994b) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6:163–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ripoll JJ, Ferrándiz C, Martínez-Laborda A, Vera A (2006) PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev Biol 289:346–359

    Article  PubMed  CAS  Google Scholar 

  • Ripoll JJ, Rodríguez-Cazorla E, González-Reig S, Andújar A, Alonso-Cantabrana H, Perez-Amador MA, Carbonell J, Martínez-Laborda A, Vera A (2009) Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C. Dev Biol 333:251–262

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rangel D, Chávez-Martínez AI, Rodríguez-Hernández AA, Maruri-López I, Urano K, Shinozaki K, Jiménez-Bremont JF (2016) Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis. Front Plant Sci 7:300

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Lee HS, Jin SR, Ko D, Martinoia E, Lee Y, An G, Ahn SN (2015) Rice PCR1 influences grain weight and Zn accumulation in grains. Plant Cell Environ 38:2327–2339

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Looi LS, Guo S, He Z, Gan ES, Huang J, Xu Y, Wee WY, Ito T (2014) Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343:1248559

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Xu Y, Ng KH, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Zhou Y, Cai J, Shang E, Yamaguchi N, Xiao J, Looi LS, Wee WY, Gao X, Wagner D, Ito T (2019) Integration of transcriptional repression and polycomb-mediated silencing of WUSCHEL in floral meristems. Plant Cell 31:1488–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theiβen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  Google Scholar 

  • Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu X, Mo X, Zhong L, Zhang J, Mo B, Kuai B (2019) Overexpression of TCP8 delays Arabidopsis flowering through a FLOWERING LOCUS C-dependent pathway. BMC Plant Biol 19:534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Cheng Z, Liu M, Yang X, Qiu D (2014) C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS ONE 9:e99352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen WH (2009) The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J 57:279–288

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Huang J, Xu Y, Tanoi K, Ito T (2017) Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nature Commun 8:1125

    Article  CAS  Google Scholar 

  • Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18:15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, Depamphilis CW, Becker A, Theiβen G, Ma H (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8:30–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y (2015) Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. J Exp Bot 66:99–112

    Article  CAS  PubMed  Google Scholar 

  • Zhang JS, Li ZC, Zhao J, Zhang SH, Quan H, Zhao M, He CY (2014a) Deciphering the Physalis floridana double-layered-lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae. Plant Physiol 164:748–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JS, Zhao J, Zhang SH, He CY (2014b) Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis. PLoS ONE 9:e85534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang K, Wang R, Zi H, Li Y, Cao X, Li D, Guo L, Tong J, Pan Y, Jiao Y, Liu R, Xiao L, Liu X (2018) AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. Plant Cell 30:324–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Tian Y, Zhang JS, Zhao M, Gong PC, Riss S, Saedler R, He CY (2013) The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in Chinese lantern development in Physalis. Plant Cell 25:2002–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31525003) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB27010106) to CYH, the Youth Innovation Promotion Association CAS (2019081) and the National Natural Science Foundation of China (31500190) to PCG.

Author information

Authors and Affiliations

Authors

Contributions

CYH designed and conceived the research work. JZ performed nearly all the experiments and obtained the results. PCG prepared plant materials used for cDNA library construction of P. floridana. HYL, MSZ and PCG performed the library screening and PPI networks analyses. JZ, PCG and CYH analyzed the data. CYH, PCG and JZ drafted the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Chaoying He.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 51 kb)

Supplementary file2 (PDF 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Gong, P., Liu, H. et al. Multiple and integrated functions of floral C-class MADS-box genes in flower and fruit development of Physalis floridana. Plant Mol Biol 107, 101–116 (2021). https://doi.org/10.1007/s11103-021-01182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01182-4

Keywords

Navigation