Skip to main content
Log in

Calmodulin7: recent insights into emerging roles in plant development and stress

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes.

Abstract

Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas N, Chattopadhyay S (2014) CAM7 and HY5 genetically interact to regulate root growth and abscisic acid responses. Plant Signal Behav 9:e29763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyay S (2014) Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cell 26:1036–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang LH, Deng XW (1994) Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6:613–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Dend XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222

    Article  CAS  PubMed  Google Scholar 

  • Anil VS, Rao KS (2001) Calcium-mediated signal transduction in plants: a perspective on the role of Ca2+ and CDPKs during early plant development. J Plant Physiol 158:1237–1256

    Article  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  CAS  PubMed  Google Scholar 

  • Bachs O, Agell N, Carafoli E (1994) Calmodulin and calmodulin-binding proteins in the nucleus. Cell Calcium 16:289–296

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Magnani R, Nair M, Dirk LM, DeBolt S, Maiti IB, Houtz R (2013) Calmodulin-mediated signal transduction pathways in Arabidopsis are fine-tuned by methylation. Plant Cell 25:4493–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31:5269–5278

    Article  CAS  PubMed  Google Scholar 

  • Benaim G, Villalobo A (2002) Phosphorylation of calmodulin. Functional Implications. Eur J Biochem 269:3619–3631

    Article  CAS  PubMed  Google Scholar 

  • Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  CAS  PubMed  Google Scholar 

  • Binkert M, Kozma-Bognár L, Terecskei K, De Veylder L, Nagy F, Ulm R (2014) UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell 26:4200–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biro RL, Daye S, Serlin BS, Terry ME, Datta N, Sopory SK, Roux SJ (1984) Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol 75:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  CAS  Google Scholar 

  • Bourbousse C, Ahmed I, Roudier F, Zabulon G, Blondet E, Balzergue S, Colot V, Boler C, Barneche C (2012) Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet 8:100

    Article  CAS  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  CAS  PubMed  Google Scholar 

  • Brost C, Studtrucker T, Reimann R, Denninger P, Czekalla J, Krebs M, Fabry B, Schumacher K, Grossmann G, Dietrich P (2019) Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. Plant J 99:910–923

    CAS  PubMed  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buetow L, Huang DT (2016) Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 17:626–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burko Y, Seluzicki A, Zander M, Pedmale UV, Ecker JR, Chory J (2020) Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism. Plant Cell 32:967–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H (2020) Identification of BBX proteins as rate-limiting cofactors of HY5. Nat Plants 6:921–928

    Article  CAS  PubMed  Google Scholar 

  • Burstenbinder K, Moller B, Plotner R, Stamm G, Hause G, Mitra D, Abel S (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173:1692–1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bush DS (1993) Regulation of cytosolic calcium in plants. Plant Physiol 103:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Campe R, Langenbach C, Leissing F, Popescu G, Popescu S, Goellner K, Beckers G, Conrath U (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytol 209:294–306

    Article  CAS  PubMed  Google Scholar 

  • Carrión AM, Link WA, Ledo F, Mellström B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398:80–84

    Article  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD (2009) Absolute protein quantification by LC/MS(E) for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 8:82–93

    Article  CAS  PubMed  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 2000(10):322–328

    Article  Google Scholar 

  • Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116

    Article  CAS  PubMed  Google Scholar 

  • Dagher R, Peng S, Gioria S, Fève M, Zeniou M, Zimmermann M, Pigault C, Haiech J, Kilhoffer MC (2011) A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin-calcium complexes. Biochim Biophys Acta 1813:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Deng XW, Quail PH (1999) Signaling in light-controlled development. Semin Cell Dev Biol 10:121–129

    Article  CAS  PubMed  Google Scholar 

  • Dindas J, Scherzer S, Roelfsema MRG, Meyer K, Müller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R (2018) AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat Commun 9:1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615

    Article  CAS  PubMed  Google Scholar 

  • Donald RG, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415:396–402

    Article  CAS  PubMed  Google Scholar 

  • Duek PD, Elmer MV, van Oosten VR, Fankhauser C (2004) The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol 14:2296–2301

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Basu R, Pal A, Parvez SW, Chattopadhyay S (2020) The Z-box binding factors (ZBFs): emerging new facets in Arabidopsis seedling development. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-020-00593-6

    Article  Google Scholar 

  • Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM (2017) The evolution of calcium-based signalling in plants. Curr Biol. 27(13):667–679. https://doi.org/10.1016/j.cub.2017.05.020

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–229

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, DeFalco TA, Karia P, Snedden WA, Moeder W, Yoshioka K, Dietrich P (2017) Calmodulin as a Ca2+-sensing subunit of Arabidopsis cyclic nucleotide-gated channel complexes. Plant Cell Physiol 58:1208–1221

    Article  CAS  PubMed  Google Scholar 

  • Friedberg F, Rhoads AR (2001) Evolutionary aspects of calmodulin. IUBMB Life 51:215–221

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3(4):653–669. https://doi.org/10.1093/mp/ssq019

    Article  CAS  PubMed  Google Scholar 

  • Gangappa SN, Botto JF (2016) The multifaceted roles of HY5 in plant growth and development. Mol Plant 9:1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Gangappa SN, Srivastava AK, Maurya JP, Ram H, Chattopadhyay S (2013) Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development. Mol Plant 6:1758–1768

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Zhou R, Li B (2012) A heat-activated calcium-permeable channel–Arabidopsis cyclic nucleotide-gated ion channel 6- is involved in heat shock responses. Plant J 70:1056–1069

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist CA, Holm CF, Hughes MA, Schaenman JM, Mann BJ, Petri WA (2001) Identification and characterization of an Entamoeba histolytica upstream regulatory element 3 sequence specific DNA-binding protein containing EF-hand motifs. J Biol Chem 276:11838–11843

    Article  CAS  PubMed  Google Scholar 

  • Gilli R, Lafitte D, Lopez C, Kilhoffer M, Makarov A, Briand C, Haiech J (1998) Thermodynamic analysis of calcium and magnesium binding to calmodulin. Biochemistry 37:5450–5456

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2:369–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena AHLAN, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    Article  CAS  PubMed  Google Scholar 

  • Ha SB, An G (1998) Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis thaliana cab1 gene. Proc Natl Acad Sci USA 85:8017–8021

    Article  Google Scholar 

  • Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466

    Article  CAS  PubMed  Google Scholar 

  • Haiech J, Klee CB, Demaille JG (1981) Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry 20:3890–3897

    Article  CAS  PubMed  Google Scholar 

  • Hajdu A, Dobos O, Domijan M, Bälint B, Nagy F, Kozma-Bognár L (2018) Elongated hypocotyl 5 mediates blue light signalling to the Arabidopsis circadian clock. Plant J 96:1242–1254

    Article  CAS  PubMed  Google Scholar 

  • Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW (2000) HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19:4997–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harter K, Kircher S, Frohnmeyer H, Krenz M, Nagy F, Schäfer E (1994) Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6:545–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashiguchi A, Komatsu S (2017) Posttranslational modifications and plant-environment interaction. Methods Enzymol 586:97–113

    Article  CAS  PubMed  Google Scholar 

  • Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2:195–201

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilleary R, Paez-Valencia J, Vens C, Toyota M, Palmgren M, Gilroy S (2020) Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proc Natl Acad Sci USA 117(31):18849–18857. https://doi.org/10.1073/pnas.2004183117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223

    Article  CAS  PubMed  Google Scholar 

  • Hoeflich KP, Ikura M (2002) Calmodulin in action. Cell 108:739–742

    Article  CAS  PubMed  Google Scholar 

  • Hofmann NR (2013) Calmodulin methylation: another layer of regulation in calcium signaling. Plant Cell 25:4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 20:4207

    Google Scholar 

  • Hsieh HL, Song CJ, Roux SJ (2000) Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. Biochim Biophys Acta 1494:248–255

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Luo J, Ning T, Cao W, Jin X, Zhao H, Wang Y, Han S (2017) Cytosolic and nucleosolic calcium signaling in response to osmotic and salt stresses are independent of each other in roots of Arabidopsis seedlings. Front Plant Sci 21(8):1648

    Article  Google Scholar 

  • Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ (2018) Multiple links between shade avoidance and auxin networks. J Exp Bot 69:213–228

    Article  CAS  PubMed  Google Scholar 

  • Ihara-Ohori Y, Nagano M, Muto S, Uchimiya H, Kawai-Yamada M (2007) Cell death suppressor Arabidopsis bax inhibitor-1 is associated with calmodulin binding and ion homeostasis. Plant Physiol 143:650–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikura M, Osawa M, Ames JB (2002) The role of calcium-binding proteins in the control of transcription: structure to function. BioEssays 24:625–636

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Yang JY, Seo HS, Chua NH (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19:593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH (2010) Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22:2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery CJ (2017) Protein moonlighting: what is it, and why is it important? Phil Trans R Soc B 373:20160523

    Article  PubMed Central  CAS  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Lin R (2020) Transcriptional regulatory network of the light signaling pathways. New Phytol 227:683–697

    Article  CAS  PubMed  Google Scholar 

  • Josse EM, Halliday KJ (2008) Skotomorphogenesis: the dark side of light signalling. Curr Biol 18:R1144–R1146

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Pan L, Reed JC, Uchimiya H (1999) Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast(1). FEBS Lett 464:143–147

    Article  CAS  PubMed  Google Scholar 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilhoffer MC, Kubina M, Travers F, Haiech J (1992) Use of engineered proteins with internal tryptophan reporter groups and pertubation techniques to probe the mechanism of ligand-protein interactions: investigation of the mechanism of calcium binding to calmodulin. Biochemistry 31:8098–8106

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Woo JC, Song PS, Soh MS (2002) HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J 30:711–719

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimczak LJ, Schindler U, Cashmore AR (1992) DNA binding activity of the Arabidopsis G-box binding factor GBF1 is stimulated by phosphorylation by casein kinase II from broccoli. Plant Cell 4:87–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klimczak LJ, Collinge MA, Farini D, Giuliano G, Walker JC, Cashmore AR (1995) Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7:105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  CAS  PubMed  Google Scholar 

  • Koorneef M, Rolff E, Spruitt CJP (1980) Genetic control of light inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160

    Article  Google Scholar 

  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Mazumder M, Gupta N, Chattopadhyay S, Gourinath S (2016) Crystal structure of Arabidopsis thaliana calmodulin7 and insight into its mode of DNA binding. FEBS Lett 590:3029–3039

    Article  CAS  PubMed  Google Scholar 

  • Kursula P (2014) The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 46(10):2295–2304. https://doi.org/10.1007/s00726-014-1795-y

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha R, Singh A, Chattopadhyay S (2008) Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell 20:1747–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landoni M, De Francesco A, Galbiati M, Tonelli C (2010) A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. Plant Mol Biol 74:235–247

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593

    Article  CAS  PubMed  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS (2008) Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem. 283(35):23581–8. https://doi.org/10.1074/jbc.M801549200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang L, Jin D, Nezames CD, Terzaghi W, Deng XW (2013) UV-B-induced photomorphogenesis in Arabidopsis. Protein Cell 4:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu C, Zhao Z, Ma D, Zhang J, Yang Y, Liu Y, Liu H (2020) COR27 and COR28 are novel regulators of the COP1-HY5 regulatory hub and photomorphogenesis in Arabidopsis. Plant Cell 32:3139–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JR, Hu J (2013) SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring. PLoS ONE 8:e76864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen J, Xu D, Deng XW (2018) B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell 30:2006–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling JJ, Li J, Zhu D, Deng XW (2017) Noncanonical role of Arabidopsis COP1/SPA complexinrepressingBIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc Natl Acad Sci USA 114:3539–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockhart J (2014) How elongated HYPOCOTYL5 helps protect plants from UV-B rays. Plant Cell 26:3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281:22190–22199

    Article  CAS  PubMed  Google Scholar 

  • Mallappa C, Singh A, Ram H, Chattopadhyay S (2008) GBF1, a transcription factor of blue light signaling in Arabidopsis, is degraded in the dark by a proteasome-mediated pathway independent of COP1 and SPA1. J Biol Chem 283:35772–35782

    Article  CAS  PubMed  Google Scholar 

  • Maréchal E, Hiratsuka K, Delgado J, Nairn A, Qin J, Chait BT, Chua NH (1999) Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Mol Biol 40:373–386

    Article  PubMed  Google Scholar 

  • Maurya JP, Sethi V, Gangappa SN, Gupta N, Chattopadhyay S (2015) Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development. Plant J 83:439–450

    Article  CAS  PubMed  Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159:585–598

    Article  CAS  PubMed  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  CAS  PubMed  Google Scholar 

  • Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 a structure of a calmodulin-peptide complex. Science 257:1251–1255

    Article  CAS  PubMed  Google Scholar 

  • Meador WE, Means AR, Quiocho FA (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262:1718–1721

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller A, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326:397–400

    Article  CAS  Google Scholar 

  • Mohanta TK, Yadav D, Khan AL, Hashem A, Abd Allah EF, Al-Harrasi A (2019) Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci 20(6):1476

    Article  CAS  PubMed Central  Google Scholar 

  • Moore B (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci 9:221–228

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Xu SL, Chalkley RJ, Pham TND, Guan S, Maltby DA, Burlingame AL, Wang ZY, Quail PH (2013) Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis. Plant Cell 25:2679–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni L, Fu X, Zhang H, Li X, Cai X, Zhang P, Liu L, Wang Q, Sun M, Wang QW, Zhang A, Zhang Z, Jiang M (2019) Abscisic acid inhibits rice protein phosphatase PP45 via H2O2 and relieves repression of the Ca2+/CaM-dependent protein kinase DMI3. Plant Cell 31:128–152. https://doi.org/10.1105/tpc.18.00506

    Article  CAS  PubMed  Google Scholar 

  • Nitsche J, Josts I, Heidemann J, Mertens HD, Maric S, Moulin M, Haertlein M, Busch S, Forsyth VT, Svergun DI, Uetrecht C, Todow H (2018) Structural basis for activation of plasma-membrane Ca2+-ATPase by calmodulin. Commun Biol 1:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu WT, Han XW, Wei SS, Shang ZL, Wang J, Yang DW, Fan X, Gao F, Zheng SZ, Bai JT, Zhang B, Wang ZX, Li B (2020) Arabidopsis cyclic nucleotide-gated channel 6 is negatively modulated by multiple calmodulin isoforms during heat shock. J Exp Bot 71:90–104

    Article  CAS  PubMed  Google Scholar 

  • Noman M, Aysha J, Ketehouli T, Yang J, Du L, Wang F, Li H (2021) Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance. J Plant Physiol 256:153327

    Article  CAS  PubMed  Google Scholar 

  • Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J, Oakeley EJ, Adam E, Schafer E, Nagy F, Ulm R (2006) Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Dace A, Tong KI, Valiveti A, Ikura M, Ames JB (2005) Mg2+ and Ca2+ differentially regulate DNA binding and dimerization of DREAM. J Biol Chem 280:18008–18014

    Article  CAS  PubMed  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000a) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  CAS  PubMed  Google Scholar 

  • Osterlund MT, Wei N, Deng XW (2000b) The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol 124:1520–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Shi H (2017) Stabilizing the transcription factors by E3 ligase COP1. Trends in Plant Sci 22:999–1001

    Article  CAS  Google Scholar 

  • Pan MR, Peng G, Hung WC, Lin SY (2011) Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 286:28599–28607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Chai X, Gao Q, Zhou L, Zhang S, Li L, Luan S (2019) Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities. Dev Cell 48:710-725.e5. https://doi.org/10.1016/j.devcel.2018.12.025

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK (2002) A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269(13):3193–3204. https://doi.org/10.1046/j.1432-1033.2002.02994.x (PMID: 12084059)

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Heo WD, Yoo JH, Lee JH, Kim MC, Chun HJ, Moon BC, Kim IH, Park HC, Choi MS, Ok HM, Cheong MS, Lee SM, Kim HS, Lee KH, Lim CO, Chung WS, Cho MJ (2004) Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol Cells 18:207–213

    CAS  PubMed  Google Scholar 

  • Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Yang T, Ii WM (2014) Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit. Plants (basel) 3:427–441

    Article  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schone S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann JU (2016) Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. Elife 5:e17023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  CAS  PubMed  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104:4730–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puente P, Wei N, Deng XW (1996) Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. EMBO J 15:3732–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu WR, Xiao X, Lin WZ, Chou KC (2014) iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. Biomed Res Int 2014:947416

    PubMed  PubMed Central  Google Scholar 

  • Radivojac P, Vucetic S, O’Connor TR, Uversky VN, Obradovic Z, Dunker AK (2006) Calmodulin signaling: analysis and prediction of a disorder-dependent molecular recognition. Proteins 63:398–410

    Article  CAS  PubMed  Google Scholar 

  • Ranjeva R, Boudet AM (1987) Phosphorylation of proteins in plants: regulatory effects and potential involvement in stimulus/response coupling. Annu Rev Plant Physiol 38:73–94

    Article  CAS  Google Scholar 

  • Ranty B, Aldon D, Galaud JP (2006) Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. Plant Signal Behav 1:96–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM, Crea R, Malech AM, Alvarado-Urbina G, Chiarello RH, Watterson DM (1985) Chemical synthesis and expression of a calmodulin gene designed for site-specific mutagenesis. Biochemistry 24:5090–8

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM, Rowe PM, Siegel FL, Lukas TJ, Watterson DM (1986) Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J Biol Chem 261:1491–1494

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18:1996–2200

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    Article  CAS  PubMed  Google Scholar 

  • Sadowski M, Suryadinata R, Tan AR, Roesley SN, Sarcevic B (2012) Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 64:136–142

    Article  CAS  PubMed  Google Scholar 

  • Sanchez P, de Torres Zabala M, Grant M (2000) AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge. Plant J 21:393–399

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarcevic B, Mawson A, Baker RT, Sutherland RL (2002) Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J 21:2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarokin LP, Chua NH (1992) Binding sites for two novel phosphoproteins, 3AF5 and 3AF3, are required for rbcS-3A expression. Plant Cell 4:473–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schepens I, Duek P, Fankhauser C (2004) Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol 7:564–569

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA, Rivard AF, Bächinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    Article  CAS  PubMed  Google Scholar 

  • Senapati D, Kushwaha R, Dutta S, Maurya JP, Biswas S, Gangappa S, Chattopadhyay S (2019) COP1 regulates the stability of CAM7 to promote photomorphogenic growth. Plant Direct 3:e00144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi V, Raghuram B, Sinha AK, Chattopadhyay S (2014) A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26:3343–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Du X (2020) Identification, characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii. Sci Rep 10:7474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Liu R, Xue C, Shen X, Wei N, Deng XW, Zhong S (2016) Seedlings transduce the depth and mechanical pressure of covering soil using COP1and ethylene to regulateEBF1/EBF2 for soil emergence. Curr Biol 26:139–149

    Article  CAS  PubMed  Google Scholar 

  • Shih HW, DePew CL, Miller ND, Monshausen GB (2015) The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr Biol 25:3119–3125

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Ram H, Abbas N, Chattopadhyay S (2012) Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana. J Biol Chem 287:25995–26009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

  • Song Z, Yan T, Liu J, Bian Y, Heng Y, Lin F, Jiang Y, Deng XW, Xu D (2020) BBX28/BBX29, HY5 and BBX30/31 form a feedback loop to fine-tune photomorphogenic development. Plant J 104:377–390

    Article  CAS  PubMed  Google Scholar 

  • Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 1099:226–236

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4:948–958

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Tobin EM (1990) Phytochrome-regulated expression of genes encoding light-harvesting chlorophyll a/b-protein in two long hypocotyl mutants and wild type plants of Arabidopsis thaliana. Photochem Photobiol 52:51–56

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660

    Article  CAS  PubMed  Google Scholar 

  • Tarcsa E, Szymanska G, Lecker S, O’Connor CM, Goldberg AL (2000) Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26S proteasomes without ubiquitination. J Biol Chem 275:20295–20301

    Article  CAS  PubMed  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 98:9437–9442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Thorogate R, Torok K (2004) Ca2+-dependent and -independent mechanisms of calmodulin nuclear translocation. J Cell Sci 117:5923–5936

    Article  CAS  PubMed  Google Scholar 

  • Tidow H, Nissen P (2013) Structural diversity of calmodulin binding to its target sites. FEBS J 280:5551–5565

    Article  CAS  PubMed  Google Scholar 

  • Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL, Wiuf C, Palmgren MG, Nissen P (2012) A bimodular mechanism of calcium control in eukaryotes. Nature 2012(491):468–472

    Article  CAS  Google Scholar 

  • Tilman D, Lehman C (2001) Human-caused environmental change: impacts on plant diversity and evolution. Proc Natl Acad Sci U S A 98:5433–5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin EM, Kehoe DM (1994) Phytochrome regulated gene expression. Semin Cell Biol 5:335–346

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2:79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BM (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8:1064–73

    Article  PubMed  CAS  Google Scholar 

  • Vetter SW, Leclerc E (2003) Novel aspects of calmodulin target recognition and activation. Eur J Biochem 270:404–414

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32:275–302

    Article  CAS  PubMed  Google Scholar 

  • Villalobo A (2018) The multifunctional role of phospho-calmodulin in pathophysiological processes. Biochem J 475:4011–4023

    Article  CAS  PubMed  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243

    Article  Google Scholar 

  • Wall ME, Clarage JB, Phillips GN (1997) Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure 5:1599–1612

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Q, Nguyen P, Lin C (2014) Cryptochrome-mediated light responses in plants. Enzymes 35:167–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP, Wu SH (2016) LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7:13181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Jiang Y, Li J, Lin F, Holm M, Deng XW (2016) BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci U S A 113:7655–7660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, Deng XW, Chattopadhyay S (2002) Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J 31:741–753

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17:1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadukrishnan P, Rahul PV, Datta S (2020) HY5 suppresses, rather than promotes, ABA-mediated inhibition of post-germination seedling development. Plant Physiol 184:547–578

    Article  CAS  Google Scholar 

  • Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2004) Plant MAPK phosphatase interacts with calmodulins. J Biol Chem 279:928–936

  • Yang C, Li L (2017) Hormonal regulation in shade avoidance. Front Plant Sci 8:1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lin R, Hoecker U, Liu B, Xu L, Wang H (2005) Repression of light signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1 protein accumulation. Plant J 43:131–141

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Peng H, Bauchan GR (2014) Functional analysis of tomato calmodulin gene family during fruit development and ripening. Hortic Res 1:14057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Shen W, Yang L, Sun Y, Li X, Lai M, Wei J, Wang C, Xu Y, Li F, Liang S, Yang C, Zhong S, Luo M, Gao C (2020) HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation. Mol Plant 13:515–531

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahasi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga K, Arimura S, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann Bot 96:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun CH, Bai J, Sun DY, Cui DF, Chang WR, Liang DC (2004) Structure of potato calmodulin PCM6: the first report of the three-dimensional structure of a plant calmodulin. Acta Crystallogr D Biol Crystallogr 60:1214–1219

    Article  PubMed  CAS  Google Scholar 

  • Zeb Q, Wang X, Hou C, Zhang X, Dong M, Zhang S, Zhang Q, Ren Z, Tian W, Zhu H, Li L, Liu L (2020) The interaction of CaM7 and CNGC14 regulates root hair growth in Arabidopsis. J Integr Plant Biol 62:887–896

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong MQ, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9:e1003422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Jang H, Gaponenko V, Nussinov R (2017a) Phosphorylated calmodulin promotes PI3K activation by binding to the SH2 domains. Biophys J 113:1956–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Pan Y, Tian W, Zhu H, Luan S, Li L (2017b) Arabidopsis CNGC14 mediates calcium influx required for tip growth in root hairs. Mol Plant 10:1004–1006

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Yue D, Wei W, Hu Y, Feng J, Zou Z (2016) Characterization and functional analysis of calmodulin and calmodulin-like genes in Fragaria vesca. Front Plant Sci 7:1820

  • Zhao Y, Liu W, Xu YP, Cao JY, Braam J, Cai XZ (2013) Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kumar SP (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J 29:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49:697–725

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by J.C. Bose National Fellowship Award Grant of SERB, Government of India to S.C. R.B. and A.P. are recipients of CSIR-JRF from Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

RB, SD, and SC conceived and designed the review. SD extracted and analyzed the GO enrichment, KEGG pathway and Genevestigator expression data. RB, SD, AP, MS, and SC wrote the manuscript.

Corresponding author

Correspondence to Sudip Chattopadhyay.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the instructions for author is: Sudip Chattopadhyay (sudipchatto@gmail.com).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Data 1. NetPhos 3.1a predicted phosphorylation sites for CAM7. Supplementary file1 (XLSX 9 kb)

11103_2021_1177_MOESM2_ESM.xlsx

Supplemental Data 2. List of CAM7 interacting proteins (CAM7-IPs) and overviews of GO and KEGG pathways analysis. Supplementary file2 (XLSX 24 kb)

11103_2021_1177_MOESM3_ESM.xlsx

Supplemental Data 3. List of Cis-acting regulatory elements (CREs) retrieved from PLACE database analysis of CAM7 promoter sequence. Supplementary file3 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, R., Dutta, S., Pal, A. et al. Calmodulin7: recent insights into emerging roles in plant development and stress. Plant Mol Biol 107, 1–20 (2021). https://doi.org/10.1007/s11103-021-01177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01177-1

Keywords

Navigation