Skip to main content
Log in

Anthocyanin synthesis in orange carrot cv. Danvers is activated by transgene expression of the transcription factors DcMYB113_NB and DcEGL1_NB from black carrot cv. Nightbird

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Black carrots are potent sources of anthocyanin for the natural food color industry as their anthocyanins contain very high percentages of acylated anthocyanins which are much more stable than non-acylated anthocyanins. Anthocyanins are synthesized by a specific branch of the phenylpropanoid pathway activated by a triad of R2R3-MYB, bHLH and WD40 transcription factors (TFs). Recent studies in black carrots have elucidated major anthocyanin related structural genes and also regulatory TFs. However, the active TFs responsible for anthocyanin production in black carrots differ between cultivars. We have previously shown by RNAseq that DcMYB113 (LOC108213488), a R2R3-MYB TF, was up-regulated in colored as compared to non-colored tissues of the black carrots ‘Superblack’ and ‘CH05544′ and that this upregulation was positively correlated with anthocyanin content. However, this gene showed no upregulation in the black carrot ‘Nightbird’ also included in that study. In the present study, we present a novel R2R3-MYB DcMYB113_NB (LOC108212072) and a complementary bHLH DcEGL1_NB (LOC108210744) isolated from the RNA of ‘Nightbird’. Their functionality as anthocyanin regulators was confirmed by their simultaneous expression under the control of a constitutive promoter in the background of the orange carrot ‘Danvers 126′. Transformants showed activation of the structural anthocyanin genes and accumulation of anthocyanins across leaves, stems and taproots. Interestingly, the anthocyanin profile of the transformants showed increases of 20 to 30% in acylated anthocyanins as compared to ‘Nightbird’ resulting in transformants with almost 100% acylated anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors thank Rikke Bækhus Jakobsen and Ole Bråd Hansen for skillful technical assistance. The work was funded by the Innovation Fond Denmark grants 4098-00043A, NewPlan and 9067-00006B, NaFoCo.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Henrik Brinch-Pedersen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 31 KB)

Supplementary file 2 (DOCX 3002 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Dionisio, G., Holme, I.B. et al. Anthocyanin synthesis in orange carrot cv. Danvers is activated by transgene expression of the transcription factors DcMYB113_NB and DcEGL1_NB from black carrot cv. Nightbird. Plant Mol Biol 106, 259–270 (2021). https://doi.org/10.1007/s11103-021-01141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01141-z

Keywords

Navigation