Skip to main content
Log in

The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Our results provide insights into the flavonol biosynthesis regulation of M. truncatula. The R2R3-MYB transcription factor MtMYB134 emerged as tool to improve the flavonol biosynthesis.

Abstract

Flavonols are plant specialized metabolites with vital roles in plant development and defense and are known as diet compound beneficial to human health. In leguminous plants, the regulatory proteins involved in flavonol biosynthesis are not well characterized. Using a homology-based approach, three R2R3-MYB transcription factor encoding genes have been identified in the Medicago truncatula reference genome sequence. The gene encoding a protein with highest similarity to known flavonol regulators, MtMYB134, was chosen for further experiments and was characterized as a functional flavonol regulator from M. truncatula. MtMYB134 expression levels are correlated with the expression of MtFLS2, encoding a key enzyme of flavonol biosynthesis, and with flavonol metabolite content. MtMYB134 was shown to activate the promoters of the A. thaliana flavonol biosynthesis genes AtCHS and AtFLS1 in Arabidopsis protoplasts in a transactivation assay and to interact with the Medicago promoters of MtCHS2 and MtFLS2 in yeast 1-hybrid assays. To ascertain the functional aspect of the identified transcription factor, we developed a sextuple mutant, which is defective in anthocyanin and flavonol biosynthesis. Ectopic expression of MtMYB134 in a multiple myb A. thaliana mutant restored flavonol biosynthesis. Furthermore, overexpression of MtMYB134 in hairy roots of M. truncatula enhanced the biosynthesis of various flavonol derivatives. Taken together, our results provide insight into the understanding of flavonol biosynthesis regulation in M. truncatula and provides MtMYB134 as tool for genetic manipulation to improve flavonol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alseekh S, Ofner I, Liu Z, Osorio S, Vallarino J, Last RL et al (2020) Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato. Plant J 103:2007–2024

    Article  CAS  PubMed  Google Scholar 

  • Appelhagen I, Jahns O, Bartelniewoehner L, Sagasser M, Weisshaar B, Stracke R (2011) Leucoanthocyanidin dioxygenase in Arabidopsis thaliana: characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes. Gene 484:61–68

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Israeli A, Levy M, Gera HB, Jiménez-Gómez JM, Kouril S, Tarkowski P, Ori N (2016) CLAUSA is a MYB transcription factor that promotes leaf differentiation by attenuating cytokinin signaling. Plant Cell 28:1602–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  • Brear EM, Bedon F, Gavrin A, Kryvoruchko IS, Torres-Jerez I, Udvardi MK et al (2020) GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytol 228:667–681

    Article  CAS  PubMed  Google Scholar 

  • Brown JW, Walker JF, Smith SA (2017) Phyx: phylogenetic tools for unix. Bioinformatics 33:1886–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty R, Banerjee R, Chung SM et al (2007) PSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing Nicotiana benthamiana-virus interactions. Mol Plant Microbe Interact 20:740–750

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A (2019) Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiol 180:1975–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dernier AB, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium Rhizogenes-Transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  Google Scholar 

  • Falcone Ferreyra ML, Casas MI, Questa JI, Herrera AL, Deblasio S, Wang J, Jackson D, Grotewold E, Casati P (2012) Evolution and expression of tandem duplicated maize flavonol synthase genes. Front Plant Sci 3:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Falcone Ferreyra ML, Emiliani J, Rodriguez EJ, Campos-Bermudez VA, Grotewold E, Casati P (2015) The identification of Maize and Arabidopsis type I FLAVONE SYNTHASEs links flavones with hormones and biotic interactions. Plant Physiol 169:1090–1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Hartman K, van der Heijden MG, Roussely-Provent V et al (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F et al (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  CAS  PubMed  Google Scholar 

  • He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J (2020) An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci USA 117:271–277

    Article  CAS  PubMed  Google Scholar 

  • Irmisch S, Ruebsam H, Jancsik S, Yuen MMS, Madilao LL, Bohlmann J (2019) Flavonol biosynthesis genes and their use in engineering the plant antidiabetic metabolite Montbretin A. Plant Physiol 180:1277–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakoby M, Hong-Yu Wang HY, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett 577:528–534

    Article  CAS  PubMed  Google Scholar 

  • Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H (2018) Two B-box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains. Plant Physiol 176:2963–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kuhn B, Nodzyński T, Errafi S et al (2017) Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Sci Rep 7:41906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J et al (2016) Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol 210:905–921

    Article  CAS  PubMed  Google Scholar 

  • Long L, Liu J, Gao Y, Xu FC, Zhao JR, Li B, Gao W (2019) Flavonoid accumulation in spontaneous cotton mutant results in red coloration and enhanced disease resistance. Plant Physiol Biochem 143:40–49

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Tang X, Tian G, Wang F, LiuNguyen KV et al (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J 61:259–270

    Article  CAS  PubMed  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P, Tuli R (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyano E, Martínez-Garcia JF, Martin C (1996) Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell 8:1519–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng JLP, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F et al (2015) Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27:2210–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Misra P, Bhambhani S, Bhatia C, Trivedi PK (2014a) Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci Rep 4:5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Misra P, Khan MP, Swarnkar G, Tewari MC, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi PK (2014b) Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. Plant Biotechnol J 12:69–80

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Misra P, Choudhary D, Yadav R, Goel R, Bhambhani S, Sanyal I, Trivedi R, Trivedi PK (2015a) AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues. Sci Rep 5:12412

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Misra P, Trivedi PK (2015b) Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep 34:1515–1528

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Alok A, Lakhwani D, Singh J, Asif MH, Trivedi PK (2016) Genome-wide expression analysis and metabolite profiling elucidate transcriptional regulation of flavonoid biosynthesis and modulation under abiotic stresses in Banana. Sci Rep 6:31361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanin biosynthesis and glycosylation in Medicago. Plant J 59:136–149

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—Approximately maximum-lkelihood tees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pucker B, Pandey A, Weisshaar B, Stracke R (2020) The R2R3-MYB gene family in banana (Musa acuminata): genome-wide identification, classification and expression patterns. PLoS ONE 15(10):e0239275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. Springer Sci. Business Media, New York, pp 97–122

    Chapter  Google Scholar 

  • Righini S, Rodriguez EJ, Berosich C, Grotewold E, Casati P, Falcone Ferreyra ML (2018) Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage. Plant Cell Environ 42:495–508

    Article  PubMed  CAS  Google Scholar 

  • Shan X, Li Y, Yang S, Yang Z, Qiu M, Gao R et al (2020) The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida. New Phytol. https://doi.org/10.1111/nph.16818

    Article  PubMed  Google Scholar 

  • Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK (2016) MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiol 171:944–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Badola PK, Bhatia C, Sharma D, Trivedi PK (2020) Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat Plants 6:1262–1274

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kumar K, Verma PK (2020) Functional characterization of genes involved in legume nodulation using hairy root cultures. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy root cultures based applications. Springer, Singapore, pp 217–228. https://doi.org/10.1007/978-981-15-4055-4_14

    Chapter  Google Scholar 

  • Skadhauge B, Thomsen KK, Wettstein D (1997) The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160

    Article  CAS  Google Scholar 

  • Sprenger-Haussels M, Weisshaar B (2000) Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J 22:1–8

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010a) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33:88–103

    CAS  PubMed  Google Scholar 

  • Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B (2010b) Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol 188:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Holtgrawe D, Schneider J et al (2014) Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biol 14:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stracke R, Thiedig K, Kuhlmann M, Weisshaar B (2016) Analyzing synthetic promoters using Arabidopsis protoplasts. Methods Mol Biol 1482:67–81

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Turgut-Kara N, Weisshaar B (2017) The AtMYB12 activation domain maps to a short C-terminal region of the transcription factor. Z Naturforsch 72:251–257

    Article  CAS  Google Scholar 

  • Tian J, Zhang J, Han ZY, Song TT, Li JY, Wang YR, Yao YC (2017) McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus Crabapple. Sci Rep 7:43715

    Article  PubMed  PubMed Central  Google Scholar 

  • Trezzini GF, Horrichs A, Sommssich IE (1993) Isolation of putative defense-related genes from Arabidopsis thaliana and expression in fungal elicitor-treated cells. Plant Mol Biol 21:385–389

    Article  CAS  PubMed  Google Scholar 

  • Verdiera J, Zhao J, Torres-Jereza I, Ge S, Liu C, He X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci USA 109:1766–1771

    Article  Google Scholar 

  • Ververidis F, Trantas E, Douglas C, Guenter V, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: reconstruction of multienzyme pathways in plant and microbes. Biotechnol J 2:1235–1249

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, Di F, Li C, Luo K (2019) R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. Plant J 99:733–751

    Article  CAS  PubMed  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by Rhizobia. Plant cell 18:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei ZX, Xia YD, Hui SL, Cong L (2017) In silico genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in Medicago truncatula. J Integr Agric 16(7):1576–1591

    Article  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK, Carpenter EJ et al (2015) Dissecting molecular evolution in the highly diverse plant clade caryophyllales using transcriptome sequencing. Mol Biol Evol 8:2001–2014

    Article  CAS  Google Scholar 

  • Yin R, Han K, Heller W, Albert A, Dobrev PI, Zažímalová E et al (2014) Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol 201:466–475

    Article  CAS  PubMed  Google Scholar 

  • Young N, Debellé F, Oldroyd G, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar PG, Hill L, Santino A, Fernie AR, Martin C (2015) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Li H, Du H, Huang H, Li Y, Hu Y, Liu H, Liu Y, Yu G, Huang Y (2016) Identification of transcription factors ZmMYB111 and ZmMYB148 involved in phenylpropanoid metabolism. Front Plant Sci 7:148

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Pang Y, Dixon RA (2010) The mysteries of proanthocyanidin transport and polymerization. Plant Physiol 153:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF et al (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Senjuti Sinha Roy for providing Medicago truncatula seeds. This work was supported by the core grant of National Institute of Plant Genome Research and Department of Science and Technology-SERB for Startup research grant to AP (Grant Number: SRG/2019/000503). JN and Ruchika acknowledge Council of Scientific and Industrial Research, Government of India for Senior Research Fellowships. The authors are thankful to DBT-eLibrary Consortium (DeLCON) for providing access to e-resources. We acknowledge Metabolome facility (BT/ INF/22/SP28268/2018) at NIPGR for phytochemical analysis.

Author information

Authors and Affiliations

Authors

Contributions

AP conceived the idea and designed the research. JN, RR and BP conducted experiments. JN and AP interpreted the data. JN, RS and AP wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashutosh Pandey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The nucleotide sequences reported in this article have been submitted to GenBank under the accession numbers [MW176076 to MW176081].

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, J., Rajput, R., Pucker, B. et al. The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula. Plant Mol Biol 106, 157–172 (2021). https://doi.org/10.1007/s11103-021-01135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01135-x

Keywords

Navigation