Skip to main content

Advertisement

Log in

SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

A novel MADS-box member SiMADS34 is essential for regulating inflorescence architecture and grain yield in Setaria italica.

Abstract

MADS-box transcription factors participate in regulating various developmental processes in plants. Inflorescence architecture is one of the most important agronomic traits and is closely associated with grain yield in most staple crops. Here, we isolated a panicle development mutant simads34 from a foxtail millet (Setaria italica (L.) P. Beauv.) EMS mutant library. The mutant showed significantly altered inflorescence architecture and decreased grain yield. Investigation of agronomic traits revealed increased panicle width by 16.8%, primary branch length by 10%, and number of primary branches by 30.9%, but reduced panicle length by 25.2%, and grain weight by 25.5% in simads34 compared with wild-type plants. Genetic analysis of a simads34 × SSR41 F2 population indicated that the simads34 phenotype was controlled by a recessive gene. Map-based cloning and bulked-segregant analysis sequencing demonstrated that a single G-to-A transition in the fifth intron of SiMADS34 in the mutant led to an alternative splicing event and caused an early termination codon in this causal gene. SiMADS34 mRNA was expressed in all of the tissues tested, with high expression levels at the heading and panicle development stages. Subcellular localization analysis showed that simads34 predominantly accumulated in the nucleus. Transcriptome sequencing identified 241 differentially expressed genes related to inflorescence development, cell expansion, cell division, meristem growth and peroxide stress in simads34. Notably, an SPL14–MADS34–RCN pathway was validated through both RNA-seq and qPCR tests, indicating the putative molecular mechanisms regulating inflorescence development by SiMADS34. Our study identified a novel MADS-box member in foxtail millet and provided a useful genetic resource for inflorescence architecture and grain yield research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal G, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59(1):125–135

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh A, Singh VP, Tyagi A, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8(1):242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barker E, Ashton N (2013) A parsimonious model of lineage-specific expansion of MADS-box genes in Physcomitrella patens. Plant Cell Rep 32(8):1161–1177

    Article  CAS  PubMed  Google Scholar 

  • Bassam B, Caetano-Anollés G, Gresshoff P (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83

    Article  CAS  PubMed  Google Scholar 

  • Bloomer R, Dean C (2017) Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. J Exp Bot 68(20):5439–5452

    Article  CAS  PubMed  Google Scholar 

  • Der G, Everitt B (2008) A handbook of statistical analyses using SAS. Chapman and Hall, New York

    Book  Google Scholar 

  • Diao X, Jia G (2017) Foxtail millet germplasm and inheritance of morphological characteristics. In: Doust A, Diao X (eds) Genetics and genomics of setaria, plant genetics and genomics: crops and models, vol 19. Springer, Cham, pp 73–92

    Chapter  Google Scholar 

  • Diao X (2011) Current status of foxtail millet production in China and future development directions. The industrial production and development system of foxtail millet in China. pp 20–30

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14(21):1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Doust A, Devos K, Gadberry M, Gale M, Kellogg E (2005) The genetic basis for inflorescence variation between foxtail and green millet (Poaceae). Genetics 169(3):1659–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorov A (1974) Chromosome numbers of flowering plants. Otto Koeltz Science Publishers, Koenigstein

    Google Scholar 

  • Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153(2):728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein D, Shu S, Howson R, Neupane R, Hayes R, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gramzow L, Ritz M, Theißen G (2010) On the origin of MADS-domain transcription factors. Trends Genet 26(4):149–153

    Article  CAS  PubMed  Google Scholar 

  • Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J et al (2018) OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell 30(4):889–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer S (2001) The Maize MADS Box Gene ZmMADS3 Affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol 127(1):33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Natur 409(6819):525

    Article  CAS  Google Scholar 

  • Hu L, Liu S (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55(3):245–256

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Feldman M, Schroder S, Bahri B, Diao X, Zhi H, Kellogg E et al (2014) Population genetics of Setaria viridis, a new model system. Mol Ecol 23(20):4912–4925

    Article  CAS  PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16(suppl 1):S1–S17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Shi S, Wang C, Niu Z, Chai Y, Zhi H, Diao X (2013) Molecular diversity and population structure of Chinese green foxtail [Setaria viridi1s (L.) Beauv.] revealed by microsatellite analysis. J Exp Bot 64(12):3645–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45(8):957

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2009) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51(1):47–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leseberg C, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    Article  CAS  PubMed  Google Scholar 

  • Li W, Meng C, Liu T (1935) Problems in the breeding of millet (Setaria italica (L.) Beuav.). J Am Soc Agron 27:963–970

    Article  Google Scholar 

  • Liu C, Teo Z, Bi Y, Song S, Xi W, Yang X et al (2013) A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 24(6):612–622

    Article  CAS  PubMed  Google Scholar 

  • Liu W (1984) Estimation of the genetic parameters for the main characters of millet and their application in breeding. J Shanxi Agric Univ 4:173–181

    Google Scholar 

  • Lu H, Zhang J, Liu K, Wu N, Li Y, Zhou K et al (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA 106(18):7367–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Yanofsky M, Meyerowitz E (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata M, Miyashita T, Kimura R, Nakata Y, Yamakawa H (2018) Mutmapplus identified novel mutant alleles of a rice starch branching enzyme iib gene for fine-tuning of cooked rice texture. Plant Biotechnol J 16(1):111–123

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29(6):743–750

    Article  CAS  PubMed  Google Scholar 

  • Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55(6):989–1003

    Article  CAS  PubMed  Google Scholar 

  • Parenicová L, De Folter S, Kieffer M, Horner D, Favalli C, Busscher J et al (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passmore S, Maine G, Elble R, Christ C, Tye B (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT$α$ cells. J Mol Biol 204(3):593–606

    Article  CAS  PubMed  Google Scholar 

  • Riechmann J, Meyerowitz E (1997) MADS domain proteins in plant development. Biol Chem 378(10):1079–1102

    CAS  PubMed  Google Scholar 

  • Soyk S, Lemmon Z, Oved M, Fisher J, Liberatore K, Park S et al (2017) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169(6):1142-1155.e12

    Article  CAS  PubMed  Google Scholar 

  • Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40(6):3901–3911

    Article  CAS  PubMed  Google Scholar 

  • Smaczniak C, Immink R, Angenent G, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139(17):3081–3098

    Article  CAS  PubMed  Google Scholar 

  • Sommer H, Beltran J, Huijser P, Pape H, Lönnig W, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9(3):605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G et al (2017) Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep 7(1):1–15

    Article  CAS  Google Scholar 

  • Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143(18):3259–3271

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40(11):1370

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Tang D, Hong L, Xu W, Huang J, Li M et al (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genet 6(1):e1000818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Zhang Q (2015) Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA 112(50):15504–15509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X et al (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950

    Article  CAS  PubMed  Google Scholar 

  • West A, Shore P, Sharrocks A (1997) DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. Mol Cell Biol 17(5):2876–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi J, Miyamoto N, Hirotsu S, Laza R, Nemoto K (2004) QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica × tropical japonica cross. Theoret Appl Genet 109(8):1555–1561

    Article  CAS  Google Scholar 

  • Yan W, Chen D, Kaufmann K (2016) Molecular mechanisms of floral organ specification by MADS domain proteins. Curr Opin Plant Biol 29:154–162

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C et al (2012) Early millet use in northern China. Proc Natl Acad Sci USA 109(10):3726–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky M, Ma H, Bowman J, Drews G, Feldmann K, Meyerowitz E (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346(6279):35

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C et al (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109(52):21534–21539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q et al (2011) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67(2):342–353

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Li X, Chen W, Peng X, Cheng X, Zhu S, Cheng B (2010) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tissue Organ Cult 105(2):159–173

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant Nos. 2019YFD1000700 and 2019YFD1000704), the National Natural Science Foundation of China (31871692), Fundamental Research Funds of CAAS (S2018PY03 to Sha Tang), the China Agricultural Research System (CARS06-13.5-A04), and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences. We thank Huw Tyson, PhD in Plant Biochemistry, graduated from University of Cambridge, for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SHH, HW, HZ performed the molecular and field experiments; SHH, ST, CT, WZ extracted the data; SHH, ST analyzed the data; SHH, ST wrote the manuscript; SHH, ST, GJ were responsible for research methodology; ST, XD, HZ for review and editing; XD, ST for conceptualization, funding acquisition, supervision, project administration.

Corresponding author

Correspondence to Xianmin Diao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussin, S.H., Wang, H., Tang, S. et al. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica. Plant Mol Biol 105, 419–434 (2021). https://doi.org/10.1007/s11103-020-01097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01097-6

Keywords

Navigation