Transcriptomic analysis reveals somatic embryogenesis-associated signaling pathways and gene expression regulation in maize (Zea mays L.)

Abstract

Key message

Transcriptome analysis of maize embryogenic callus and somatic embryos reveals associated genes reprogramming, hormone signaling pathways and transcriptional regulation involved in somatic embryogenesis in maize.

Abstract

Somatic embryos are widely utilized in propagation and genetic engineering of crop plants. In our laboratory, an elite maize inbred line Y423 that could generate intact somatic embryos was obtained and applied to genetic transformation. To enhance our understanding of regulatory mechanisms during maize somatic embryogenesis, we used RNA-based sequencing (RNA-seq) to characterize the transcriptome of immature embryo (IE), embryogenic callus (EC) and somatic embryo (SE) from maize inbred line Y423. The number of differentially expressed genes (DEGs) in three pairwise comparisons (IE-vs-EC, IE-vs-SE and EC-vs-SE) was 5767, 7084 and 1065, respectively. The expression patterns of DEGs were separated into eight major clusters. Somatic embryogenesis associated genes were mainly grouped into cluster A or B with an expression trend toward up-regulation during dedifferentiation. GO annotation and KEGG pathway analysis revealed that DEGs were implicated in plant hormone signal transduction, stress response and metabolic process. Among the differentially expressed transcription factors, the most frequently represented families were associated with the common stress response or related to cell differentiation, embryogenic patterning and embryonic maturation processes. Genes include hormone response/transduction and stress response, as well as several transcription factors were discussed in this study, which may be potential candidates for further analyses regarding their roles in somatic embryogenesis. Furthermore, the temporal expression patterns of candidate genes were analyzed to reveal their roles in somatic embryogenesis. This transcriptomic data provide insights into future functional studies, which will facilitate further dissections of the molecular mechanisms that control maize somatic embryogenesis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

The raw RNA-Seq data was available at NCBI-SRA (PRJNA645628) in fastq format.

References

  1. Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260

    CAS  PubMed  Google Scholar 

  2. Batistic O, Kudla J (2012) Analysis of calcium signaling pathways in plants. BBA Gen Subjects 1820:1283–1293

    CAS  Google Scholar 

  3. Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B 365:61–71

    Google Scholar 

  4. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends Plant Sci 13:624–630

    CAS  PubMed  Google Scholar 

  6. Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    CAS  PubMed  Google Scholar 

  7. Cheng YF, Dai XH, Zhao YD (2007) Auxin synthesized by the YUCCA flavin Monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiwocha S, von Aderkas P (2002) Endogenous levels of free and conjugated forms of auxin, cytokinins and abscisic acid during seed development in Douglas fir. Plant Growth Regul 36:191–200

    CAS  Google Scholar 

  9. Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    CAS  PubMed  Google Scholar 

  11. Fambrini M, Cionini G, Bianchi R, Pugliesi C (2000) Epiphylly in a variant of Helianthus annuus x H. tuberosus induced by in vitro tissue culture. Int J Plant Sci 161:13–22

    CAS  PubMed  Google Scholar 

  12. Fan MZ, Xu CY, Xu K, Hu YX (2012) Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Feher A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402

    CAS  PubMed  Google Scholar 

  14. Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228

    CAS  Google Scholar 

  15. Finkelstein RR, Tenbarge KM, Shumway JE, Crouch ML (1985) Role of aba in maturation of rapeseed embryos. Plant Physiol 78:630–636

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    CAS  PubMed  Google Scholar 

  17. Garrocho-Villegas V, de Jesus-Olivera MT, Quintanar ES (2012) Maize somatic embryogenesis: recent features to improve plant regeneration. Methods Mol Biol 877:173–182

    CAS  PubMed  Google Scholar 

  18. Ge F, Hu HM, Huang X, Zhang YL, Wang YL, Li ZL, Zou CY, Peng HW, Li LJ, Gao SB, Pan GT, Shen YO (2017) Metabolomic and proteomic analysis of maize embryonic callus induced from immature embryo. Sci Rep 7:1–16

    Google Scholar 

  19. Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 8:e69261

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grafi G, Barak S (2015) Stress induces cell dedifferentiation in plants. BBA Gene Regul Mech 1849:378–384

    CAS  Google Scholar 

  21. Guan LQM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    CAS  PubMed  Google Scholar 

  22. Guillou C, Fillodeau A, Brulard E, Breton D, De Faria MS, Verdier D, Simon M, Ducos JP (2018) Indirect somatic embryogenesis of Theobroma cacao L. in liquid medium and improvement of embryo-to-plantlet conversion rate. In Vitro Cell Dev Biol Plant 54:377–391

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    CAS  PubMed  Google Scholar 

  24. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045

    CAS  Google Scholar 

  28. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    CAS  PubMed  Google Scholar 

  30. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurczynska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:619–628

    CAS  PubMed  Google Scholar 

  32. Liu BB, Su SZ, Wu Y, Li Y, Shan XH, Li SP, Liu HK, Dong HX, Ding MQ, Han JY, Yuan YP (2015) Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423. Plant Physiol Biochem 92:81–91

    CAS  PubMed  Google Scholar 

  33. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis leafy cotyledon1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    CAS  PubMed  Google Scholar 

  34. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  35. Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29:1830–1831

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 61:615–627

    CAS  PubMed  Google Scholar 

  38. McGonigle B, Keeler SJ, Lan SMC, Koeppe MK, O'Keefe DP (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124:1105–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mendes E, Piletti R, Barichello T, Oliveira CM, Kniess CT, Angioletto E, Riella HG, Fiori MA (2012) The influence of particle size and AgNO3 concentration in the ionic exchange process on the fungicidal action of antimicrobial glass. Mater Sci Eng, C 32:1518–1523

    CAS  Google Scholar 

  40. Mendez-Hernandez HA, Ledezma-Rodriguez M, Avilez-Montalvo RN, Juarez-Gomez YL, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas VM (2019) Signaling overview of plant somatic embryogenesis. Front Plant Sci 10:77

    PubMed  PubMed Central  Google Scholar 

  41. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  42. Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    CAS  PubMed  Google Scholar 

  43. Nawaz M, Ullah I, Iqbal N, Iqbal MZ, Javed MA (2013) Improving in vitro leaf disk regeneration system of sugarcane (Saccharum officinarum L.) with concurrent shoot/root induction from somatic embryos. Turk J Biol 37:726–732

    CAS  Google Scholar 

  44. Nawy T, Lukowitz W, Bayer M (2008) Talk global, act local—patterning the Arabidopsis embryo. Curr Opin Plant Biol 11:28–33

    CAS  PubMed  Google Scholar 

  45. Nowak K, Wojcikowska B, Gaj MD (2015) ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241:967–985

    CAS  PubMed  Google Scholar 

  46. Palovaara J, Hakman I (2008) Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol Biol 66:533–549

    CAS  PubMed  Google Scholar 

  47. Perez-Nunez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    CAS  PubMed  Google Scholar 

  48. Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–827

    CAS  PubMed  Google Scholar 

  49. Piyatrakul P, Putranto RA, Martin F, Rio M, Dessailly F, Leclercq J, Dufayard JF, Lardet L, Montoro P (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12:244

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Raine R, Haines A, Sensky T, Hutchings A, Larkin K, Black N (2002) Systematic review of mental health interventions for patients with common somatic symptoms: can research evidence from secondary care be extrapolated to primary care? BMJ 325:1082

    PubMed  PubMed Central  Google Scholar 

  51. Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Org 100:31–37

    Google Scholar 

  52. Rensing SA, Lang D, Schumann E, Reski R, Hohe A (2005) EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. J Plant Growth Regul 24:102–115

    CAS  Google Scholar 

  53. Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J (2015) Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142:702–711

    CAS  PubMed  Google Scholar 

  54. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  55. Rose RJ (2019) Somatic embryogenesis in the medicago truncatula model: cellular and molecular mechanisms. Front Plant Sci 10:267

    PubMed  PubMed Central  Google Scholar 

  56. Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–3248

    CAS  PubMed  Google Scholar 

  57. Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 9:e111407

    PubMed  PubMed Central  Google Scholar 

  58. Schulze SK, Kanwar R, Golzenleuchter M, Therneau TM, Beutler AS (2012) SERE: single-parameter quality control and sample comparison for RNA-Seq. BMC Genomics 13:1–9

    Google Scholar 

  59. Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998) C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 39:1184–1193

    CAS  PubMed  Google Scholar 

  60. Somssich M, Je BI, Simon R, Jackson D (2016) Clavata-Wuschel signaling in the shoot meristem. Development 143:3238–3248

    CAS  PubMed  Google Scholar 

  61. Song YL (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113

    CAS  PubMed  Google Scholar 

  62. Su YH, Zhang XS (2014) The hormonal control of regeneration in plants. Curr Top Dev Biol 108:35–69

    CAS  PubMed  Google Scholar 

  63. Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792

    PubMed  PubMed Central  Google Scholar 

  65. Sun LF, Wu Y, Su SZ, Liu HK, Yang G, Li SP, Shan XH, Yuan YP (2012) Differential gene expression during somatic embryogenesis in the maize (Zea mays L.) inbred line H99. Plant Cell Tissue Org 109:271–286

    CAS  Google Scholar 

  66. Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol 45:28–39

    CAS  PubMed  Google Scholar 

  67. Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146:1663–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem PPB 42:35–42

    CAS  PubMed  Google Scholar 

  70. Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652

    CAS  PubMed  Google Scholar 

  71. Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tissue Org 93:163–171

    CAS  Google Scholar 

  72. von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Org 69:233–249

    Google Scholar 

  73. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theor Biosci 131:281–285

    CAS  Google Scholar 

  74. Weigel D, Jurgens G (2002) Stem cells that make stems. Nature 415:751–754

    CAS  PubMed  Google Scholar 

  75. Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 16:301

    PubMed  PubMed Central  Google Scholar 

  76. Yang XY, Zhang XL (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    CAS  Google Scholar 

  77. Yang H, Saitou T, Komeda Y, Harada H, Kamada H (1996) Late embryogenesis abundant protein in Arabidopsis thaliana homologous to carrot ECP31. Physiol Plant 98:661–666

    CAS  Google Scholar 

  78. Yang XY, Zhang XL, Yuan DJ, Jin FY, Zhang YC, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:110

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13:1–9

    Google Scholar 

  81. Zhai L, Xu L, Wang Y, Zhu XW, Feng HY, Li C, Luo XB, Everlyne MM, Liu LW (2016) Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep 6:21652

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang SB, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    CAS  PubMed  Google Scholar 

  83. Zhang Q, Chen J, Henny RJ (2005) Direct somatic embryogenesis and plant regeneration from leaf, petiole, and stem explants of Golden Pothos. Plant Cell Rep 23:587–595

    CAS  PubMed  Google Scholar 

  84. Zhao YD (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    CAS  PubMed  Google Scholar 

  85. Zheng YM, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zur I, Dubas E, Krzewska M, Janowiak F (2015) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:42

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0101203); The National Transgenic Crops of New Varieties Breeding Major Project-New Germplasm Combination Breeding of Cold Tolerance Transgenic Maize (20142X0800305B).

Author information

Affiliations

Authors

Contributions

MD, XS and YY conceived and designed the experiments. MD, XS and HD performed the experiments; MD, XS, HD and YY analyzed the data. Others supply reagents/materials/analysis tools. MD and HD wrote the paper. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xiaohui Shan or Yaping Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (RAR 3557 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Dong, H., Xue, Y. et al. Transcriptomic analysis reveals somatic embryogenesis-associated signaling pathways and gene expression regulation in maize (Zea mays L.). Plant Mol Biol (2020). https://doi.org/10.1007/s11103-020-01066-z

Download citation

Keywords

  • Zea mays L.
  • Somatic embryogenesis
  • RNA-seq
  • Transcription regulation
  • Expression pattern