Skip to main content
Log in

Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

This research provides comprehensive insight into the molecular networks and molecular mechanisms underlying D. officinale flower development.

Abstract

Flowers are complex reproductive organs and play a crucial role in plant propagation, while also providing sustenance for insects and natural bioactive metabolites for humans. However, knowledge about gene regulation and floral metabolomes in flowers is limited. In this study, we used an important orchid species (Dendrobium officinale), whose flowers can be used to make herbal tea, to perform transcriptome sequencing and metabolic profiling of early- and medium-stage flower buds, as well as opened flowers, to provide comprehensive insight into the molecular mechanisms underlying flower development. A total of 8019 differentially expressed genes (DEGs) and 239 differentiated metabolites were found. The transcription factors that were identified and analyzed belong exclusively to the MIKC-type MADS-box proteins and auxin responsive factors that are known to be involved in flower development. The expression of genes involved in chlorophyll and carotenoid biosynthesis strongly matched the metabolite accumulation patterns. The genes related to flavonoid and polysaccharide biosynthesis were active during flower development. Interestingly, indole-3-acetic acid and abscisic acid, whose trend of accumulation was inverse during flower development, may play an important role in this process. Collectively, the identification of DEGs and differentiated metabolites could help to illustrate the regulatory networks and molecular mechanisms important for flower development in this orchid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons H, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582

    CAS  Google Scholar 

  • Arrom L, Munné-Bosch S (2012) Hormonal changes during flower development in floral tissues of Lilium. Planta 236:343–354

    CAS  Google Scholar 

  • Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055

    CAS  Google Scholar 

  • Borghi M, Fernie AR (2017) Floral metabolism of sugars and amino acids: implications for pollinators' preferences and seed and fruit set. Plant Physiol 175:1510–1524

    CAS  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    CAS  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    CAS  Google Scholar 

  • Chang Y-Y, Kao N-H, Li J-Y, Hsu W-H, Liang Y-L, Wu J-W, Yang C-H (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152:837–853

    CAS  Google Scholar 

  • Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, Van den Berg C, Schuiteman A (2015) An updated classification of Orchidaceae. Bot J Linn Soc 177:151–174

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31

    CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) Auxin response factor1 and Auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    CAS  Google Scholar 

  • Enomoto H, Kohata K, Nakayama M, Yamaguchi Y, Ichimura K (2004) 2-C-methyl-D-erythritol is a major carbohydrate in petals of Phlox subulata possibly involved in flower development. J Plant Physiol 161:977–980

    CAS  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform 7:191

    Google Scholar 

  • Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    CAS  Google Scholar 

  • Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711

    CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2013) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Google Scholar 

  • Fornara F, Pařenicová L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219

    CAS  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    CAS  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin EV (2014) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269

    Google Scholar 

  • Ghelli R, Brunetti P, Napoli N, De Paolis A, Cecchetti V, Tsuge T, Serino G, Matsui M, Mele G, Rinaldi G (2018) A newly identified flower-specific splice variant of AUXIN RESPONSE FACTOR8 regulates stamen elongation and endothecium lignification in Arabidopsis. Plant Cell 30:620–637

    CAS  Google Scholar 

  • Gene Ontology Consortium (2014) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056

    Google Scholar 

  • Guo L, Wang Y, Teixeira da Silva JA, Fan Y, Yu X (2018) Transcriptome and chemical analysis reveal putative genes involved in flower color change in Paeonia ‘Coral Sunset’. Plant Physiol Biochem 138:130–139

    Google Scholar 

  • He C, Zhang J, Liu X, Zeng S, Wu K, Yu Z, Wang X, Teixeira da Silva JA, Lin Z, Duan J (2015) Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol Biol 88:219–231

    CAS  Google Scholar 

  • He C, Wu K, Zhang J, Liu X, Zeng S, Yu Z, Zhang X, Teixeira da Silva JA, Deng R, Tan J, Luo J, Duan J (2017a) Cytochemical localization of polysaccharides in Dendrobium officinale and the involvement of DoCSLA6 in the synthesis of mannan polysaccharides. Front Plant Sci 8:173

    Google Scholar 

  • He C, Yu Z, Teixeira da Silva JA, Zhang J, Liu X, Wang X, Zhang X, Zeng S, Wu K, Tan J, Ma G, Luo J, Duan J (2017b) DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Sci Rep 7:41010

    CAS  Google Scholar 

  • He C, Zeng S, Teixeira da Silva JA, Yu Z, Tan J, Duan J (2017c) Molecular cloning and functional analysis of the phosphomannomutase (PMM) gene from Dendrobium officinale and evidence for the involvement of an abiotic stress response during germination. Protoplasma 254:1693–1704

    CAS  Google Scholar 

  • He C, Si C, Teixeira da Silva JA, Li M, Duan J (2019) Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid. BMC Plant Biol 19:223

    Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M (2015) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293

    Google Scholar 

  • Huijser P, Klein J, Lönnig W, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239–1249

    CAS  Google Scholar 

  • Ithal N, Reddy AR (2004) Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci 166:1505–1513

    CAS  Google Scholar 

  • Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G (2016) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045

    Google Scholar 

  • Johnson S (1994) Evidence for Batesian mimicry in a butterfly-pollinated orchid. Biol J Lin Soc 53:91–104

    Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Google Scholar 

  • Koshita Y, Takahara T, Ogata T, Goto A (1999) Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). Sci Hortic 79:185–194

    CAS  Google Scholar 

  • Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375

    CAS  Google Scholar 

  • Kwantes M, Liebsch D, Verelst W (2011) How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 29:293–302

    Google Scholar 

  • Li X, Ding X, Chu B, Zhou Q, Ding G, Gu S (2008) Genetic diversity analysis and conservation of the endangered Chinese endemic herb Dendrobium officinale Kimura et Migo (Orchidaceae) based on AFLP. Genetica 133:159–166

    CAS  Google Scholar 

  • Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theißen G, Meng Z (2013) Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25:1288–1303

    CAS  Google Scholar 

  • Lu S-J, Wei H, Wang Y, Wang H-M, Yang R-F, Zhang X-B, Tu J-M (2012) Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.). Plant Mol Biol Rep 30:1461–1469

    CAS  Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273

    CAS  Google Scholar 

  • Moyroud E, Glover BJ (2017) The physics of pollinator attraction. New Phytol 216:350–354

    CAS  Google Scholar 

  • Mudalige-Jayawickrama RG, Champagne MM, Hieber AD, Kuehnle AR (2005) Cloning and characterization of two anthocyanin biosynthetic genes from Dendrobium orchid. J Am Soc Hortic Sci 130:611–618

    CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    CAS  Google Scholar 

  • Panche A, Diwan A, Chandra S (2016) Flavonoids: an overview. Journal of Nutritional Science 5:e47

    CAS  Google Scholar 

  • Paulus HF (2019) Speciation, pattern recognition and the maximization of pollination: general questions and answers given by the reproductive biology of the orchid genus Ophrys. J Comp Physiol A 205:285–300

    Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200

    CAS  Google Scholar 

  • Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pè EM, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122

    CAS  Google Scholar 

  • Pružinská A, Tanner G, Anders I, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron–sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264

    Google Scholar 

  • Quan H, Yu Q-Y, Shi J, Xiong C-Y, Ling Z-J, He P-M (2011) Structural characterization and antioxidant activities of 2 water-soluble polysaccharide fractions purified from tea (Camellia sinensis) flower. J Food Sci 76:C462–C471

    Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    CAS  Google Scholar 

  • Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arab Book 10:e0158–e0158

    Google Scholar 

  • Smaczniak C, Immink RG, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098

    CAS  Google Scholar 

  • Stenbaek A, Jensen PE (2010) Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853–859

    CAS  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C-E, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2009) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    CAS  Google Scholar 

  • Teixeira da Silva JA, Ng TB (2017) The medicinal and pharmaceutical importance of Dendrobium species. Appl Microbiol Biotechnol 101:2227–2239

    CAS  Google Scholar 

  • Teixeira da Silva JA, Aceto S, Liu W, Yu H, Kanno A (2014) Genetic control of flower development, color and senescence of Dendrobium orchids. Sci Hortic 175:74–86

    CAS  Google Scholar 

  • Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3271

    Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    CAS  Google Scholar 

  • Tian J, Che H-L, Ha D, Wei Y-P, Zheng S-Y (2012) Characterization and anti-allergic effect of a polysaccharide from the flower buds of Lonicera japonica. Carbohyd Polym 90:1642–1647

    CAS  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signaling in flower senescence: an overview. Plant Signal Behav 2:437–445

    Google Scholar 

  • Tsai W-C, Kuoh C-S, Chuang M-H, Chen W-H, Chen H-H (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831–844

    CAS  Google Scholar 

  • Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M (2011) AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23:973–983

    CAS  Google Scholar 

  • Vignolini S, Davey MP, Bateman RM, Rudall PJ, Moyroud E, Tratt J, Malmgren S, Steiner U, Glover BJ (2012) The mirror crack'd: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum. New Phytol 196:1038–1047

    Google Scholar 

  • Villalobos-González L, Peña-Neira A, Ibáñez F, Pastenes C (2016) Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: gene expression and metabolite content. Plant Physiol Biochem 105:213–223

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Whang S-S, Um W-S, Song I-J, Lim PO, Choi K, Park K-W, Kang K-W, Choi M-S, Koo J-C (2011) Molecular analysis of anthocyanin biosynthetic genes and control of flower coloration by flavonoid 3′, 5′-hydroxylase (F3′ 5′ H) in Dendrobium moniliforme. J Plant Biol 54:209–218

    CAS  Google Scholar 

  • Xing X-H, Cui SW, Nie S-P, Phillips GO, Goff HD, Wang Q (2013) A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioact Carbohydr Diet Fibre 1:131–147

    CAS  Google Scholar 

  • Yap Y-M, Loh C-S, Ong B-L (2008) Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism. Sci Hortic 119:59–66

    CAS  Google Scholar 

  • Yu Z, He C, Teixeira da Silva JA, Luo J, Yang Z, Duan J (2018) The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. Plant Sci 277:43–54

    CAS  Google Scholar 

  • Zhang G-Q, Liu K-W, Li Z, Lohaus R, Hsiao Y-Y, Niu S-C, Wang J-Y, Lin Y-C, Xu Q, Chen L-J (2017) The Apostasia genome and the evolution of orchids. Nature 549:379

    CAS  Google Scholar 

  • Zobell O, Faigl W, Saedler H, Münster T (2010) MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Mol Biol Evol 27:1201–1211

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Number: 31800204), the Natural Science Foundation of Guangdong Province Projects (Grant Number: 2018A030313603), and the Science and Technology Program of Guangzhou (Grant Number: 201704020010).

Author information

Authors and Affiliations

Authors

Contributions

JD supervised the project. CH conceived the research and designed the experiments. MZ analysed mannose content. CH, XL, NL and JATdS collectively interpreted the results and wrote all drafts of the manuscript. All authors approved the final draft for submission and take full public responsibility for the content of the manuscript.

Corresponding author

Correspondence to Jun Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7319 kb)

Supplementary file2 (XLSX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Liu, X., Teixeira da Silva, J.A. et al. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae). Plant Mol Biol 104, 529–548 (2020). https://doi.org/10.1007/s11103-020-01058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01058-z

Keywords

Navigation