Skip to main content

Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia

Key message

The field survey in this article showed in ‘KU50’, a popular variety and late-branching type of cassava in Southeast Asia, that flowering rarely occurs in normal-field conditions in Southeast Asia but is strongly induced in the dry season in the mountainous region. Flowering time is correlated with the expression patterns of MeFT1 and homologs of Arabidopsis GI, PHYA, and NF-Ys.

Abstract

Cassava (Manihot esculenta Crantz) is a tropical crop that is propagated vegetatively rather than sexually by seed. Flowering rarely occurs in the erect-type variety grown in Southeast Asia, but it is known that cassava produces flowers every year in mountainous regions. Data pertaining to the effect of environmental factors on flowering time and gene expression in cassava, however, is limited. The aim of the present study was to determine the kinds of environmental conditions that regulate flowering time in cassava and the underlying molecular mechanisms. The flowering status of KU50, a popular variety in Southeast Asia and late-branching type of cassava, was monitored in six fields in Vietnam and Cambodia. At non-flowering and flowering field locations in North Vietnam, the two FLOWERING LOCUS T (FT)-like genes, MeFT1 and MeFT2, were characterized by qPCR, and the pattern of expression of flowering-related genes and genes responsive to environmental signals were analyzed by using RNA sequencing data from time-series samples. Results indicate that cassava flowering was induced in the dry season in the mountain region, and that flowering time was correlated with the expression of MeFT1, and homologs of Arabidopsis GI, PHYA, and NF-Ys. Based upon these data, we hypothesize that floral induction in cassava is triggered by some conditions present in the mountain regions during the dry season.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL (2017) Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS ONE 12:e0181460. https://doi.org/10.1371/journal.pone.0181460

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Adeyemo OS, Hyde PT, Setter TL (2019) Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reprod 32:181–191. https://doi.org/10.1007/s00497-018-00354-5

    CAS  PubMed  Article  Google Scholar 

  3. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. https://doi.org/10.1126/science.284.5423.2148

    CAS  PubMed  Article  Google Scholar 

  4. Aziz ZA (1984) Observations on the effect of low temperature on floral induction in cassava MARDI Research Bulletin (Malaysia)

  5. Blumel M, Dally N, Jung C (2015) Flowering time regulation in crops-what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129. https://doi.org/10.1016/j.copbio.2014.11.023

    CAS  PubMed  Article  Google Scholar 

  6. Bull SE, Alder A, Barsan C, Kohler M, Hennig L, Gruissem W, Vanderschuren H (2017) FLOWERING LOCUS T triggers early and fertile flowering in glasshouse cassava (Manihot esculenta Crantz). Plants (Basel). https://doi.org/10.3390/plants6020022

    Article  Google Scholar 

  7. Ceballos H, Iglesias CA, Perez JC, Dixon AG (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516. https://doi.org/10.1007/s11103-004-5010-5

    CAS  PubMed  Article  Google Scholar 

  8. Ceballos H, Jaramillo J, Salazar S, Pineda L, Calle F, Setter T (2017) Induction of flowering in cassava through grafting. J Plant Breed Crop Sci 9:19–29. https://doi.org/10.5897/jpbcs2016.0617

    CAS  Article  Google Scholar 

  9. Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885. https://doi.org/10.1038/nature01636

    CAS  PubMed  Article  Google Scholar 

  10. Chavarriaga-Aguirre P, Halsey M (2005) Cassava (Manihot esculenta Crantz): reproductive biology and practices for confinement of experimental field trials. In: Report prepared for the Program for Biosafety Systems., Washington, D.C.: Program for Biosafety Systems

  11. Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708–719. https://doi.org/10.1111/tpj.13461

    CAS  PubMed  Article  Google Scholar 

  12. Corbesier L et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752

    CAS  PubMed  Article  Google Scholar 

  13. FAO (2013) Save and grow: cassava A guide to sustainable production intensification

  14. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166. https://doi.org/10.1199/tab.0166

    PubMed  PubMed Central  Article  Google Scholar 

  15. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550, 550 e551–552. https://doi.org/10.1016/j.cell.2010.04.024

  16. Fowler S et al (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688. https://doi.org/10.1093/emboj/18.17.4679

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Guillaumot D et al (2009) The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-Golgi-localized membrane protein. Plant J 60:242–256. https://doi.org/10.1111/j.1365-313X.2009.03950.x

    PubMed  Article  Google Scholar 

  18. Hershey CH (1987) Cassava breeding: a multidisciplinary review. CIAT, Cali

    Google Scholar 

  19. Howeler RH, Maung Aye T (2014) Sustainable management of cassava in Asia from research to practice. International Center for Tropical Agriculture (CIAT); The Nippon Foundation, p 168

  20. Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD (2012) PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69:601–612. https://doi.org/10.1111/j.1365-313X.2011.04815.x

    CAS  PubMed  Article  Google Scholar 

  21. Keating BA, Evenson JP, Fukai S (1982) Environmental effects on growth and development of cassava (Manihot esculenta Crantz.) I Crop development. Field Crops Res 5:271–281. https://doi.org/10.1016/0378-4290(82)90030-2

    Article  Google Scholar 

  22. Kim SY (2005) The role of ABF family bZIP class transcription factors in stress response. Physiologia Plant 126:527. https://doi.org/10.1111/j.1399-3054.2005.00601.x

    CAS  Article  Google Scholar 

  23. Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK (2013) Mass flowering of the tropical treeShorea beccarianawas preceded by expression changes in flowering and drought-responsive genes. Mol Ecol 22:4767–4782. https://doi.org/10.1111/mec.12344

    PubMed  PubMed Central  Article  Google Scholar 

  24. Laubinger S et al (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:4608–4608. https://doi.org/10.1242/dev.02691

    CAS  Article  Google Scholar 

  25. Leonardo SS, Diniz RP, Neves RdJ, Alves AAC, Eder JdO (2018) Grafting as a strategy to increase flowering of cassava. Sci Hortic 240:544–551. https://doi.org/10.1016/j.scienta.2018.06.070

    Article  Google Scholar 

  26. Li W, Herrera-Estrella L, Tran LP (2016) The Yin-Yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci 21:548–550. https://doi.org/10.1016/j.tplants.2016.05.006

    CAS  PubMed  Article  Google Scholar 

  27. Liu H et al (2013) Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc Natl Acad Sci USA 110:17582–17587. https://doi.org/10.1073/pnas.1308987110

    PubMed  Article  Google Scholar 

  28. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539. https://doi.org/10.1126/science.1163927

    CAS  PubMed  Article  Google Scholar 

  29. Luo X et al (2018) The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis. Plant J 95:17–29. https://doi.org/10.1111/tpj.13926

    CAS  PubMed  Article  Google Scholar 

  30. Mockler T, Yang H, Yu X, Parikh D, Yc C, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci 100:2140–2145. https://doi.org/10.1073/pnas.0437826100

    CAS  PubMed  Article  Google Scholar 

  31. Nguyen KH et al (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA 113:3090–3095. https://doi.org/10.1073/pnas.1600399113

    CAS  PubMed  Article  Google Scholar 

  32. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. https://doi.org/10.1104/pp.108.122465

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Olasanmi B (2018) Crossability among five cassava (Manihot Esculenta CRANTZ) varieties. Mod Concepts Dev Agron. https://doi.org/10.31031/mcda.2018.02.000543

    Article  Google Scholar 

  34. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158. https://doi.org/10.1104/pp.104.042606

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Petroni K et al (2012) The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 24:4777–4792. https://doi.org/10.1105/tpc.112.105734

    PubMed  PubMed Central  Article  Google Scholar 

  36. Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–930. https://doi.org/10.1126/science.250.4983.923

    CAS  PubMed  Article  Google Scholar 

  37. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847

    CAS  PubMed  Article  Google Scholar 

  38. Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M (2016) Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Front Plant Sci 7:180. https://doi.org/10.3389/fpls.2016.00180

    PubMed  PubMed Central  Article  Google Scholar 

  39. Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162:1706–1719. https://doi.org/10.1104/pp.113.217729

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309–6322. https://doi.org/10.1093/jxb/erw384

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci 88:7496

    CAS  PubMed  Article  Google Scholar 

  42. Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265. https://doi.org/10.1126/science.1146994

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Shimizu KK, Kudoh H, Kobayashi MJ (2011) Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann Bot 108:777–787. https://doi.org/10.1093/aob/mcr180

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Song YH et al (2018) Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat Plants 4:824–835. https://doi.org/10.1038/s41477-018-0253-3

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464. https://doi.org/10.1146/annurev-arplant-043014-115555

    CAS  PubMed  Article  Google Scholar 

  46. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036. https://doi.org/10.1126/science.1141753

    CAS  PubMed  Article  Google Scholar 

  47. Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8:359–377. https://doi.org/10.1016/j.molp.2014.12.018

    CAS  PubMed  Article  Google Scholar 

  48. Townsley BT, Covington MF, Ichihashi Y, Zumstein K, Sinha NR (2015) BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction. Front Plant Sci 6:366. https://doi.org/10.3389/fpls.2015.00366

    PubMed  PubMed Central  Article  Google Scholar 

  49. Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52. https://doi.org/10.1016/j.pbi.2010.08.016

    CAS  PubMed  Article  Google Scholar 

  50. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594. https://doi.org/10.1146/annurev.arplant.59.032607.092755

    CAS  PubMed  Article  Google Scholar 

  51. Utsumi Y, Utsumi C, Tanaka M, Ha VT, Matsui A, Takahashi S, Seki M (2017) Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS ONE 12:e0180736. https://doi.org/10.1371/journal.pone.0180736

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Valverde F (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006. https://doi.org/10.1126/science.1091761

    CAS  PubMed  Article  Google Scholar 

  53. Whittaker C, Dean C (2017) The FLC locus: a platform for discoveries in epigenetics and Adaptation. Annu Rev Cell Dev Biol 33:555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546

    CAS  PubMed  Article  Google Scholar 

  54. Wang W, Hostettler CE, Damberger FF, Kossmann J, Lloyd JR, Zeeman SC (2018) Modification of cassava root starch phosphorylation enhances starch functional properties. Front Plant Sci 9:1562

    PubMed  PubMed Central  Article  Google Scholar 

  55. Yeoh SH et al (2017) Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia from gene expression analyses. Mol Ecol 26:5074–5085. https://doi.org/10.1111/mec.14257

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors from AGI were supported by the Ministry of Agriculture and Rural Development in Vietnam under decision No. 364/QD-BNN-HTQT. Dr. Prapit Wongtiem and Ms. Suwaluk Amawan (Rayong Field Crops Research Center, Thailand) provided advice on flowering research in cassava. Mr. Nguyen Trong Hien (Root and Tuber Crop Research and Development Center, Vietnam) advised us on planting site selection and cultivation methods. This research was supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS) in a collaboration between the Japan Science and Technology Agency (JST, JPMJSA1508) and the Japan International Cooperation Agency (JICA), JSPS under the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, and by a grant from the RIKEN Center for Sustainable Resource Science (CSRS).

Author information

Affiliations

Authors

Contributions

HTokunaga designed research, performed the experiments, analyzed data, and wrote the article. DTNQ, NHA, PTN designed and conducted research, analyzed data. NMA, TMH, NBNM, VAT, NBT and KY performed the experiments. NVD, LHH and MI, NHH, PS, and NAV contributed to revisions of the article. AM, ST, MT, AH analyzed transcriptome data. HTsuji, YU, MS designed research, analyzed transcriptome data, and wrote the article.

Corresponding authors

Correspondence to Hiroki Tokunaga or Motoaki Seki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokunaga, H., Quynh, D.T.N., Anh, N.H. et al. Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia. Plant Mol Biol (2020). https://doi.org/10.1007/s11103-020-01057-0

Download citation

Keywords

  • Cassava
  • Field transcriptome
  • Flowering
  • Manihot esculenta
  • MeFT1