Skip to main content
Log in

Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plants are sessile and unable to avoid environmental stresses, such as drought, high temperature, and high salinity, which often limit the overall plant growth. Plants have evolved many complex mechanisms to survive these abiotic stresses via post-translational modifications. Recent evidence suggests that ubiquitination plays a crucial role in regulating abiotic stress responses in plants by regulating their substrate proteins. Here, we reported the molecular function of a RING finger E3 ligase, Oryza sativa Drought, Heat and Salt-induced RING finger protein 1 (OsDHSRP1), involved in regulating plant abiotic stress tolerance via the Ub/26S proteasome system. The OsDHSRP1 gene transcripts were highly expressed under various abiotic stresses such as NaCl, drought, and heat and the phytohormone abscisic acid (ABA). In addition, in vitro ubiquitination assays demonstrated that the OsDHSRP1 protein possesses a RING-H2 type domain that confers ligase functionality. The results of yeast two-hybrid (Y2H), in vitro pull-down, and bimolecular fluorescence complementation assays support that OsDHSRP1 is able to regulate two substrates, O. sativa glyoxalase (OsGLYI-11.2) and O. sativa abiotic stress-induced cysteine proteinase 1 (OsACP1). We further confirmed that these two substrate proteins were ubiquitinated by OsDHSRP1 E3 ligase and caused protein degradation via the Ub/26S proteasome system. The Arabidopsis plants overexpressing OsDHSRP1 exhibited hypersensitivity to drought, heat, and NaCl stress and a decrease in their germination rates and root lengths compared to the control plants because the degradation of the OsGLYI-11.2 protein maintained lower glyoxalase levels, which increased the methylglyoxal amount in transgenic Arabidopsis plants. However, the OsDHSRP1-overexpressing plants showed no significant difference when treated with ABA. Our finding supports the hypothesis that the OsDHSRP1 E3 ligase acts as a negative regulator, and the degradation of its substrate proteins via ubiquitination plays important roles in regulating various abiotic stress responses via an ABA-independent pathway.

Key message

OsDHSRP1 is an E3 ligase that acts as a negative regulator in the plant response to various abiotic stresses via the 26S proteasomal system regulation of substrate proteins, which it provides important information for adaptation and regulation under abiotic stress in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of cup-shaped cotyledon mutant. Plant Cell 9:841–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balazadeh S, Wu A, Mueller-Roeber B (2010) Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal Behav 5(6):733–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    CAS  PubMed  Google Scholar 

  • Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65(1):43–58

    CAS  PubMed  Google Scholar 

  • Bhaskara GB, Wen TN, Nguyen TT, Verslues PE (2017) Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell 29(1):169–191. https://doi.org/10.1105/tpc.16.00847

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Li Y, Shen Y, Ren H (2010) Cortical microtubule labeling: insight of AFH14 in non-dividing cells. Plant Signal Behav 5(12):1619–1622

    PubMed  PubMed Central  Google Scholar 

  • Carrijo DR, Lundy ME, Linquist BA (2017) Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res 203:173–180

    Google Scholar 

  • Chapagain S, Park YC, Kim JH, Jang CS (2018) Oryza sativa salt-induced RING E3 ligase 2 (OsSIRP2) acts as a positive regulator of transketolase in plant response to salinity and osmotic stress. Planta 247(4):925–939

    CAS  PubMed  Google Scholar 

  • Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D (2014) What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol 165(2):519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz RP, Sperotto RA, Cargnelutti D, Adamski JM, FreitasTerra TD, Fett JP (2013) Avoiding damage and achieving cold tolerance in rice plants. Food Energy Secur 2(2):96–119. https://doi.org/10.1002/fes3.25

    Article  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11(5):e0156362

    PubMed  PubMed Central  Google Scholar 

  • García-Cano E, Zaltsman A, Citovsky V (2014) Assaying proteasomal degradation in a cell-free system in plants. J Vis Exp 85:e51293. https://doi.org/10.3791/51293

    Article  CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Google Scholar 

  • Flick K, Kaiser P (2012) Protein degradation and the stress response. Semin Cell Dev Biol 23(5):515–522. https://doi.org/10.1016/j.semcdb.2012.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76(1–2):145–156. https://doi.org/10.1007/s11103-011-9775-z

    Article  CAS  PubMed  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97(7):3735–3740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara-Nishimura I (1995) Vacuolar processing enzyme responsible for maturation of vacuolar proteins. Seikagaku. 67(5):372–327

    CAS  PubMed  Google Scholar 

  • Hashimoto T (2015) Microtubules in plants. Arabidopsis Book 13:e0179. https://doi.org/10.1199/tab.0179

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Climate Extremes 10:4–10

    Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916

    CAS  PubMed  Google Scholar 

  • Hiraiwa N, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. FEBS Lett 447(2–3):213–216

    CAS  PubMed  Google Scholar 

  • Hoque TS, Uraji M, Tuya A, Nakamura Y, Murata Y (2012) Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol 14(854–858):3

    Google Scholar 

  • Hwang SG, Kim JJ, Lim SD, Park YC, Moon JC, Jang CS (2016) Molecular dissection of Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress. Physiol Plant 158(2):168–179

    CAS  PubMed  Google Scholar 

  • Khanna-Chopra R, Srivalli B, Ahlawat YS (1999) Drought induces many forms of cysteine proteases not observed during natural senescence. Biochem Biophys Res Commun 255(2):324–327

    CAS  PubMed  Google Scholar 

  • Kidrič M, Kos J (2014) Sabotič J (2014) Proteases and their endogenous inhibitors in the plant response to abiotic stress. Bot SERBICA 38(1):139–158

    Google Scholar 

  • Kim JH, Lim SD, Jang CS (2019) Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress. Plant Mol Biol 99(6):545–559

    CAS  PubMed  Google Scholar 

  • Kost B, Chua NH (2002) The plant cytoskeleton: vacuoles and cell walls make the difference. Cell 108(1):9–12

    CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608. https://doi.org/10.1093/jxb/err460

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C (2011) The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol 156(2):550–563. https://doi.org/10.1104/pp.111.176214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang X, Cai YM, Wu JH, Mo BT, Yu ER (2017) Arabidopsis heat stress transcription factors A2 (HSFA2) and A3 (HSFA3) function in the same heat regulation pathway. Acta Physiol Plant 39:67. https://doi.org/10.1007/s11738-017-2351-7

    Article  CAS  Google Scholar 

  • Lim SD, Hwang JG, Jung CG, Hwang SG, Moon JC, Jang CS (2013) Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res 20(3):299–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Jung CG, Park YC, Lee SC, Lee C, Lim CW, Kim DS, Jang CS (2015) Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis. Plant Mol Biol 89:365–384

    CAS  PubMed  Google Scholar 

  • Liu H, Hu M, Wang Q, Cheng L, Zhang Z (2018) Role of papain-like cysteine proteases in plant development. Front Plant Sci 9:1717. https://doi.org/10.3389/fpls.2018.01717

    Article  PubMed  PubMed Central  Google Scholar 

  • Lourenço T, Sapeta H, Figueiredo DD, Rodrigues M, Cordeiro A, Abreu IA, Saibo NJ, Oliveira MM (2013) Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Mol Biol 83(4–5):351–363

    PubMed  Google Scholar 

  • Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H (2019) GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01979

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez M, Cambra I, González-Melendi P, Santamaría ME, Díaz I (2012) C1A cysteine-proteases and their inhibitors in plants. Physiol Plant 145:85–94

    PubMed  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitch WE (1996) Goldberg AL (1996) Mechanisms of muscle wasting: the role of the ubiquitin-proteasome system. N Engl J Med 335:1897–1905

    CAS  PubMed  Google Scholar 

  • Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL (2014) A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J 78(6):951–963. https://doi.org/10.1111/tpj.12521

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    CAS  PubMed  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    CAS  PubMed  Google Scholar 

  • Nakashima N, Kanamori N, Nagatoshi Y, Fujita Y, Takasaki H, Urano K, Mogami J, Mizoi J, Mertz-Henning LM, Neumaier N, Farias JRB, Fuganti-Pagliarini R, Marin SRR, Shinozaki K, Yamaguchi-Shinozaki K, Alexandre Lima Nepomuceno AL (2018) Application of Biotechnology to Generate Drought-Tolerant Soybean Plants in Brazil: Development of Genetic Engineering Technology of Crops with Stress Tolerance Against Degradation of Global Environment. Crop Production under Stressful Conditions. pp 111–130.

  • Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17(3):876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157(1):242–255. https://doi.org/10.1104/pp.111.180893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogales E (2001) Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 30:397–420

    CAS  PubMed  Google Scholar 

  • Oliveira AB, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development. Respon Organ Water Stress. https://doi.org/10.5772/54223

    Article  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    CAS  PubMed  Google Scholar 

  • Park YC, Chapagain S, Jang CS (2017) The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). Planta 247:875–886

    PubMed  Google Scholar 

  • Park YC, Chapagain S, Jang CS (2018) A negative regulator in response to salinity in rice: oryza sativa salt-, ABA- and drought-induced RING finger protein 1 (OsSADR1). Plant Cell Physiol 59(3):575–589. https://doi.org/10.1093/pcp/pcy009

    Article  CAS  PubMed  Google Scholar 

  • Parrot DL, Martin JM, Fischer AM (2010) Analysis of barley (Hordeum vulgare) lead senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but not low to moderate nitrogen levels. New Phytol 187:313–331

    Google Scholar 

  • Pérez-Patricio M, Camas-Anzueto JL, Sanchez-Alegría A, Aguilar-González A, Gutiérrez-Miceli F, Escobar-Gómez E, Voisin Y, Rios-Rojas C, Grajales-Coutiño R (2018) Optical method for estimating the chlorophyll contents in plant leaves. Sensors (Basel) 18(2):650. https://doi.org/10.3390/s18020650

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5):1292–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. PNAS 103(49):18822–18827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA (2017) Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci. 18(4):E898. https://doi.org/10.3390/ijms18040898

    Article  CAS  PubMed  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53(2):264–274

    CAS  PubMed  Google Scholar 

  • Sedbrook JC (2004) MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7:632–640

    CAS  PubMed  Google Scholar 

  • Sewelam N, Kazan K, Hüdig M, Maurino VG, Schenk PM (2019) The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int J Mol Sci 20(13):3201. https://doi.org/10.3390/ijms20133201

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK (2016) Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci 7:806. https://doi.org/10.3389/fpls.2016.00806

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97(12):6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Yang W (2017) E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol 58(9):1461–1476. https://doi.org/10.1093/pcp/pcx071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100(25):14672–14677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    CAS  PubMed  Google Scholar 

  • Smits MM, Johnson MA (1981) Methylgloxal: enzyme distributions relative to its presence in Douglas-fir needles and absence in Douglas-fir needle callus. Arch Biochem Biophys 208(2):431–439

    CAS  PubMed  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11(3):431–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. https://doi.org/10.1186/1471-2229-14-111

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Summary for Policymakers. In climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Cambridge University Press, Cambridge, United Kingdom and New York

  • Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135. https://doi.org/10.3389/fpls.2014.00135

    Article  PubMed  PubMed Central  Google Scholar 

  • Sueldo DJ, van der Hoorn RAL (2017) Plant life needs cell death, but does plant cell death need Cys proteases? FEBS J 284(10):1577–1585. https://doi.org/10.1111/febs.14034

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    CAS  PubMed  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wang AQ, Yu XH, MaoY LiuY, Liu GQ, Liu YS, Niu XL (2015) Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. PlantBreed 134:384–393

    CAS  Google Scholar 

  • Wang J, Lian W, Cao Y, Wang X, Wang G, Qi C, Liu L, Qin S, Yuan X, Li X, Ren S, Guo YD (2018a) Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci Rep 8(1):13349. https://doi.org/10.1038/s41598-018-31690-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhou XM, Xiong HX, Mao WY, Zhao P, Sun MX (2018b) Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. BMC Plant Biol 18(1):87. https://doi.org/10.1186/s12870-018-1298-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Xiong H, Lin R, Zhao N, Zhao P, Sun MX (2019) A VPE-like protease NtTPE8 exclusively expresses in the integumentary tapetum and is involved in seed development. J Integr Plant Biol 61(5):598–610

    CAS  PubMed  Google Scholar 

  • Yabuuchi T, Nakai T, Sonobe S, Yamauchi D, Mineyuki Y (2015) Preprophase band formation and cortical division zone establishment: RanGAP behaves differently from microtubules during their band formation. Plant Signal Behav 10(9):e1060385. https://doi.org/10.1080/15592324.2015.1060385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337(1):61–67

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    CAS  PubMed  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2(1):22–31. https://doi.org/10.1093/mp/ssn058

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozak K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685

    CAS  PubMed  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. https://doi.org/10.1016/j.pbi.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  • Zang QW, Wang CX, Li XY, Guo ZA, Jing RL, Chang ZJ, Chang XP (2010) Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 35:379–388. https://doi.org/10.1007/s12038-010-0043-1

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Xiong F, Yu X, Gong X, Luo J, Jiang Y, Kuang H, Gao B, Niu X, Liu Y (2016) Overexpression of a glyoxalase gene, OsGLYI-11.2 I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Plant Physiol Biochem 109:62–71. https://doi.org/10.1016/j.plaphy.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wei B, Yuan R, Wang J, Ding M, Chen Z, Yu H, Qin G (2017) The Arabidopsis RING-type E3 ligase TEAR1 controls leaf development by targeting the TIE1 transcriptional repressor for degradation. Plant Cell 29(2):243–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xu ZS, Li P, Yang L, Wei Y, Chen M, Li L, Zhang G, Ma Y (2013) Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep 31:688–697. https://doi.org/10.1007/s11105-012-0546-z

    Article  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646

    CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19(6):1912–1929

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (grant number NRF-2019R1A2C1009840), Cooperative research program for agriculture science and technology development (PJ013429012019), and 2017 Research Grant from Kangwon National University (No. 520170189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Seong Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 30119 kb)

Supplementary file2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Lim, S.D. & Jang, C.S. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. Plant Mol Biol 103, 235–252 (2020). https://doi.org/10.1007/s11103-020-00989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-00989-x

Keywords

Navigation