Enhancing disease resistance in poplar through modification of its natural defense pathway

Abstract

Key message

Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva.

Abstract

Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ali GS, Reddy ASN (2000) Inhibition of fungal and bacterial plant pathogens by synthetic peptides: in vitro growth inhibition, interaction between peptides and inhibition of disease progression. Mol Plant Microbe Interact 13:847–859

    Article  CAS  PubMed  Google Scholar 

  2. Allefs SJHM, Florack DEA, Hoogendoorn C, Stiekema WJ (1995) Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not altered. Am Potato J 72:437–445

    Article  CAS  Google Scholar 

  3. Balatinecz JJ, Kretschmann DE (2001) Properties and utilization of poplar wood. In: Dickmann DI et al (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 277–290

    Google Scholar 

  4. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  CAS  PubMed  Google Scholar 

  5. Burdsall HH Jr, Dorworth EB (1994) Preserving cultures of wood-decaying Basidiomycotina using sterile distilled water in cryovials. Mycologia 86(2):275–280

    Article  Google Scholar 

  6. Callan BE, Leal I, Foord B, Dennis JJ, van Oosten C (2007) Septoria musiva isolated from cankered stems in hybrid poplar stool beds, Fraser Valley, British Columbia. Pac Northwest Fungi 2(7):1–9

    Google Scholar 

  7. Cavallarin L, Andreu D, San Segundo S (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact 11:218–227

    Article  CAS  PubMed  Google Scholar 

  8. Feau N, Mottet M-J, Périnet P, Hamelin RC, Bernier L (2010) Recent advances related to poplar leaf spot and canker caused by Septoria musiva. Can J Plant Pathol 32(2):122–134

    Article  Google Scholar 

  9. Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W (1995) Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Res 4:132–141

    Article  CAS  PubMed  Google Scholar 

  10. Gao A, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  PubMed  Google Scholar 

  11. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  12. Häggman H, Raybould A, Borem A et al (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol J 11(7):785–798

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  CAS  PubMed  Google Scholar 

  14. Haney EF, Hancock REW (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100(6):572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Scarascia Mugnozza G (2012) Accelerating the domestication of forest trees in a changing world. Trends Plant Sci 17:64–72

    Article  CAS  PubMed  Google Scholar 

  16. Hightower R, Baden C, Penzes E, Dunsmuir P (1994) The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv. tabaci. Plant Cell Rep 13:295–299

    Article  CAS  PubMed  Google Scholar 

  17. Hollick JB, Gordon MP (1993) A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco. Plant Mol Biol 22:561–572

    Article  CAS  PubMed  Google Scholar 

  18. Hollick JB, Gordon MP (1995) Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes. Plant Physiol 109:73–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Liu H, Jia Z, Fang Q, Luo K (2012) Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. Tree Physiol 32:1313–1320

    Article  CAS  PubMed  Google Scholar 

  20. Jacobi V, Plourde A, Charest PJ, Hamelin RC (2000) In vitro toxicity of natural and designed peptides to tree pathogens and pollen. Can J Bot 78:455–461

    CAS  Google Scholar 

  21. JrRS Zalesny, Wiese AH, Bauer EO, Riemenschneider DE (2006) Sapflow of hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry ‘NM6’) during phytoremediation of landfill leachate. Biomass Bioenergy 30:784–793

    Article  Google Scholar 

  22. Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    Article  CAS  PubMed  Google Scholar 

  23. Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29:1–9

    Article  Google Scholar 

  24. Larson PI, Isebrands JG (1971) The plastochron index as applied to developmental studies of cottonwood. Can J For Res 1:1–11

    Article  Google Scholar 

  25. Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    Article  CAS  PubMed  Google Scholar 

  26. Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  27. Liang H, Staton M, Xu Y, Xu T, LeBoldus J (2014) Comparative expression analysis of resistant and susceptible Populus clones inoculated with Septoria musiva. Plant Sci 223:69–78

    Article  CAS  PubMed  Google Scholar 

  28. Lo MH, Abrahamson LP, White EH, Manion PD (1995) Early measures of basal area and canker disease predict growth potential of some hybrid poplar clones. Can J Res 25:1113–1118

    Article  Google Scholar 

  29. Marcos JF, Muñoz A, Párez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301

    Article  CAS  PubMed  Google Scholar 

  30. Marmiroli MF, Pietrini E, Maestri M, Zacchini N, Marmiroli A, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31:1319–1334

    Article  CAS  PubMed  Google Scholar 

  31. Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McDonald B (2010) How can we achieve durable disease resistance in agricultural ecosystems? New Phytol 185:3–5

    Article  PubMed  Google Scholar 

  33. McPhee JB, Hancock RE (2005) Function and therapeutic potential of host defence peptides. J Pept Sci 11(11):677–687

    Article  CAS  PubMed  Google Scholar 

  34. Medgyesy P, Menczel L, Maliga P (1980) The use of cytoplasmic streptomycin resistance: chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris, and isolation of their somatic hybrids. Mol Gen Genet 179:693–698

    Article  CAS  Google Scholar 

  35. Minocha SC (2000) Optimization of the expression of a transgene in plants. In: Mohan Jain S, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, pp 1–30

    Google Scholar 

  36. Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constable CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 20:816–831

    Article  CAS  PubMed  Google Scholar 

  37. Mookherjee N, Chow LNY, Hancock REW (2012) Immunomodulatory cationic peptide therapeutics: a new paradigm in infection and immunity. In: Rajasekaran K, Cary JW, Jaynes JM, Montesinos E (eds) Small wonders: peptides for disease control. ACS Symposium Series 1095, Oxford University Press, Washington, pp 1–19

  38. Mor A, Amiche M, Nicolas P (1994) Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33:6642–6650

    Article  CAS  PubMed  Google Scholar 

  39. Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  PubMed  Google Scholar 

  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  41. Nicolas P, Amri CEI (2009) The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biomembranes (BBA) 1788(8):1537–1550

    Article  CAS  Google Scholar 

  42. Noël A, Levasseur C, Le VQ, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67:92–99

    Article  CAS  Google Scholar 

  43. Ostry ME, McRoberts RE, Ward KT, Resendez R (1988) Screening hybrid poplars in vitro for resistance to leaf spot caused by Septoria musiva. Plant Dis 72:497–499

    Article  Google Scholar 

  44. Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  CAS  PubMed  Google Scholar 

  45. Osusky M, Osuska L, Kay WW, Misra S (2005) Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theor Appl Genet 111:711–722

    Article  CAS  PubMed  Google Scholar 

  46. Park YG, Son SH (1992) In vitro shoot regeneration from leaf mesophyll protoplasts of hybrid poplar (Populus nigra × P. maximowiczii). Plant Cell Rep 11:2–6

    Article  CAS  PubMed  Google Scholar 

  47. Rajasekaran K, Cary JW, Chlan CA, Jaynes JM, Bhatnagar D (2012) Strategies for controlling plant diseases and mycotoxin contamination using antimicrobial synthetic peptides. In: Rajasekaran K, Cary JW, Jaynes JM, Montesinos E (eds) Small wonders: peptides for disease control. ACS Symposium Series 1095. Oxford University Press, Washington, pp 295–316

  48. Roedl A (2010) Production and energetic utilization of wood from short rotation coppice—a life cycle assessment. Int J Life Cycle Assess 15:567–578

    Article  CAS  Google Scholar 

  49. Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9 (9):457–464

    Article  CAS  PubMed  Google Scholar 

  50. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  51. Schnetkamp PPM, Kaupp UB, Junge W (1981) Interfacial potentials at the disk membranes of isolated intact cattle rod outer segments as a function of the occupation state of the intradiskal cation-exchange binding sites. Biomembranes (BBA) 642(2):213–230

    Article  CAS  Google Scholar 

  52. Stanosz JC, Stanosz GR (2002) A medium to enhance identification of Septoria musiva from poplar cankers. For Path 32:145–152

    Article  Google Scholar 

  53. Strauss S, Ma C, Ault K, Klocko AL (2016) Lessons from two decades of field trials with genetically modified trees in the USA: biology and regulatory c compliance. In: Vettori C et al (eds) Biosafety of forest transgenic trees. Springer, Dordrecht, pp 101–124

    Google Scholar 

  54. Yevtushenko DP, Misra S (2007) Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol J 5:720–734

    Article  CAS  PubMed  Google Scholar 

  55. Yevtushenko DP, Misra S (2010) Efficient method for Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29:211–221

    Article  CAS  PubMed  Google Scholar 

  56. Yevtushenko DP, Misra S (2012) Transgenic expression of antimicrobial peptides in plants: Strategies for enhanced disease resistance, improved productivity, and production of therapeutics. In: Rajasekaran K, Cary JW, Jaynes JM, Montesinos E (eds) Small wonders: peptides for disease control. ACS Symposium Series 1095. Oxford University Press, Washington, pp 445–458

  57. Yevtushenko DP, SidorovVA Romero R, Kay WW, Misra S (2004) Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Sci 167:715–724

    Article  CAS  Google Scholar 

  58. Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1695

    Article  CAS  PubMed  Google Scholar 

  59. Yi JY, Seo HW, Yang MS, Robb EJ, Nazar RN, Lee SW (2004) Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta 220:165–171

    Article  CAS  PubMed  Google Scholar 

  60. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Arun Goyal (University of Minnesota-Duluth, MN, USA) for providing plants of hybrid poplar P. nigra L. × P. maximowiczii A. Henry, genotype NM6; Dr. Brenda Callan (Pacific Forestry Centre, Victoria, BC, Canada) for providing the in vitro culture of Septoria musiva; Dr. C. Peter Constabel (University of Victoria, BC, Canada) for providing the fungus Melampsora medusae; Dr. Bob Chow (University of Victoria, BC, Canada) for helping with microscopy imaging; and Dr. Barbara Hawkins (University of Victoria, BC, Canada) for her kind support of this project.

Funding

This study was funded by grants from the National Centre of Excellence, and the Advanced Foods and Materials Network to S.M.

Author information

Affiliations

Authors

Contributions

D.Y. and S.M. designed the study, discussed and interpreted the results. DY conducted the experiments and wrote the manuscript. Both authors contributed to the final manuscript.

Corresponding author

Correspondence to Dmytro P. Yevtushenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Resistance of NM6 leaves to M. medusae infection (PDF 990 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yevtushenko, D.P., Misra, S. Enhancing disease resistance in poplar through modification of its natural defense pathway. Plant Mol Biol 100, 481–494 (2019). https://doi.org/10.1007/s11103-019-00874-2

Download citation

Keywords

  • Host defense peptides
  • MsrA2
  • win3.12T poplar promoter
  • Populus nigra L. × P. maximowiczii A. Henry
  • Septoria musiva
  • Disease resistance