Skip to main content

Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development

Abstract

Key message

Overexpression of the poplar PP2C protein phosphatase gene PtrHAB2 resulted in increased tree height and altered leaf morphology and phyllotaxy, implicating PP2C phosphatases as growth regulators functioning under favorable conditions.

Abstract

We identified and studied Populus trichocarpa genes, PtrHAB1 through PtrHAB15, belonging to the clade A PP2C family of protein phosphatases known to regulate abscisic acid (ABA) signaling. PtrHAB1 through PtrHAB3 and PtrHAB12 through PtrHAB15 were the most highly expressed genes under non-stress conditions. The poplar PP2C genes were differentially regulated by drought treatments. Expression of PtrHAB1 through PtrHAB3 was unchanged or downregulated in response to drought, while all other PtrHAB genes were weakly to strongly upregulated in response to drought stress treatments. Yeast two-hybrid assays involving seven ABA receptor proteins (PtrRCAR) against 12 PtrHAB proteins detected 51 interactions involving eight PP2Cs and all PtrRCAR proteins with 22 interactions requiring the addition of ABA. PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 also interacted with the sucrose non-fermenting related kinase 2 proteins PtrSnRK2.10 and PtrSnRK2.11, supporting conservation of a SnRK2 signaling cascade regulated by PP2C in poplar. Additionally, PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 interacted with the mitogen-activated protein kinase protein PtrMPK7. Due to its interactions with PtrSnRK2 and PtrMPK7 proteins, and its reduced expression during drought stress, PtrHAB2 was overexpressed in poplar to test its potential as a growth regulator under non-stress conditions. 35S::PtrHAB2 transgenics exhibited increased growth rate for a majority of transgenic events and alterations in leaf phyllotaxy and morphology. These results indicate that PP2Cs have additional roles which extend beyond canonical ABA signaling, possibly coordinating plant growth and development in response to environmental conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Arend M, Schnitzler JP, Ehlting B, Hansch R, Lange T, Rennenberg H, Himmelbach A, Grill E, Fromm J (2009) Expression of the Arabidopsis mutant ABI1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars. Plant Physiol 151:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero JM, Piqueras P, Gonzalez-Guzman M, Serrano R, Rodriguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Benschop JJ, Bou J, Peeters AJ, Wagemaker N, Guhl K, Ward D, Hedden P, Moritz T, Voesenek LA (2006) Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin1. Plant Physiol 141:1644–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetricleaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Chen G, Wang Y, Huang Y, Marchant DB, Wang Y, Yang Q, Dai F, Hills A, Franks PJ, Nevo E, Soltis DE, Soltis PS, Sessa E, Wolf PG, Xue D, Zhang G, Pogson BJ, Blatt MR, Chen ZH (2017) Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiol 174:732–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Envir 25:1663–1676

    Article  CAS  Google Scholar 

  • Chan Z (2012) Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110–115

    Article  CAS  PubMed  Google Scholar 

  • Chater C, Gray JE (2015) Stomatal closure: the old guard takes up the SLAC. Curr Biol 25:R271–R273

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang D, Zhang C, Xia X, Yin W, Tian Q (2015) A putative PP2C-encoding gene negatively regulates ABA signaling in Populus euphratica. PLoS ONE 10:e0139466. https://doi.org/10.1371/journal.pone.0139466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Boudsocq M, Neubauer J, Frei Dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby JP, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J (2015) Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J 82:232–244

    Article  CAS  PubMed  Google Scholar 

  • Dkhar J, Pareek A (2014) What determines a leaf’s shape? EvoDevo 5:47. https://doi.org/10.1186/2041-9139-5-47

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filichkin SA, Meilan R, Busov VB, Ma C, Brunner AM, Strauss SH (2006) Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep 25:660–667

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Hamilton M, Dharmawardhana PD, Singh SK, Sullivan C, Ben-Hur A, Reddy ASN, Jaiswal P (2018) Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Front Plant Sci 9:5. https://doi.org/10.3389/fpls.2018.00005

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs S, Grill E, Meskiene I, Schweighofer A (2013) Type 2C protein phosphatases in plants. FEBS J 280:681–693

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Furumizu C, Alvarez JP, Sakakibara K, Bowman JL (2015) Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet 11:e1004980. https://doi.org/10.1371/journal.pgen.1004980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gookin TE, Assmann SM (2014) Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J 80:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214

    Article  CAS  PubMed  Google Scholar 

  • Hao Q, Yin P, Li W, Wang L, Yan C, Lin Z, Wu JZ, Wang J, Yan SF, Yan N (2011) The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42:662–672

    Article  CAS  PubMed  Google Scholar 

  • Jalmi SK, Sinha AK (2016) Functional involvement of a mitogen activated protein kinase module, OsMKK3-OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in rice. Sci Rep 6:37974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss SH (2018) Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Front Bioeng Biotechnol 6:100. https://doi.org/10.3389/fbioe.2018.00100

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson PR (1975) Development and organization of the primary vascular dystem in Populus deltoides according to phyllotaxy. Am J Bot 62:1082–1099

    Article  Google Scholar 

  • Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. PNAS 106:21419–21424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeNoble ME, Spollen WG, Sharp RE (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55:237–245

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Orfanidi S, Chefdor F, Mészaros T, Bolte S, Mizoguchi T, Shinozaki K, Giraudat J, Bögre L (2006) Antagonistic interaction between MAP kinase and protein phosphatase 2C in stress recovery. Plant Sci 171:596–606

    Article  CAS  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Sasaki Y, Li X, Mori IC, Matsuura T, Hirayama T, Sato T, Yamaguchi J (2015) ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis. J Exp Bot 66:2763–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitula F, Tajdel M, Ciesla A, Kasprowicz-Maluski A, Kulik A, Babula-Skowronska D, Michalak M, Dobrowolska G, Sadowski J, Ludwikow A (2015) Arabidopsis ABA-activated kinase MAPKKK18 is regulated by protein phosphatase 2C ABI1 and the ubiquitin-proteasome pathway. Plant Cell Physiol 56:2351–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407

    Article  CAS  PubMed  Google Scholar 

  • Papacek M, Christmann A, Grill E (2017) Interaction network of ABA receptors in grey poplar. Plant J 92:199–210

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, ZhaoY Lumba S, Santiago J, Rodrigues A, Chow TF et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves WM, Lynch TJ, Mobin R, Finkelstein RR (2011) Direct targets of the transcription factors ABA-insensitive (ABI) 4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Mol Biol 75:347–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, Difazio SP (2012) Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res 22:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354–369

    Article  CAS  PubMed  Google Scholar 

  • Saez A, Robert N, Maktabi MH, Schroeder JI, Serran R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2017) ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat Plants 3:16204. https://doi.org/10.1038/nplants.2016.204

    Article  CAS  PubMed  Google Scholar 

  • Song X, Ohtani M, Hori C, Takebayasi A, Hiroyama R, Rejab NA, Suzuki T, Demura T, Yin T, Yu X, Zhuge Q (2015) Physical interaction between SnRK2 and PP2C is conserved in Populus trichocarpa. Plant Biotechnol 32:337–341

    Article  CAS  Google Scholar 

  • Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MH, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    Article  CAS  PubMed  Google Scholar 

  • Sorce C, Giovannelli A, Sebastiani L, Anfodillo T (2013) Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep 32:885–898

    Article  CAS  PubMed  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 62:25–35

    Article  CAS  Google Scholar 

  • Tajdel M, Mitula F, Ludwikow A (2016) Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway. Plant Signal Behav 11:e1139277. https://doi.org/10.1080/15592324.2016.1139277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Dong Y, Liang D, Zhang Z, Ye CY, Shuai P, Han X, Zhao Y, Yin W, Xia X (2014) Analysis of the drought stress-responsive transcriptome of black cottonwood (Populus trichocarpa) using deep RNA sequencing. Plant Mol Biol Rep 33:424–438

    Article  CAS  Google Scholar 

  • Tischer SV, Wunschel C, Papacek M, Kleigrewe K, Hofmann T, Christmann A, Grill E (2017) Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. PNAS 114:10280–10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mähler N, Hvidsten TR, Eklund DM, Bowman JL, Helariutta Y, Bhalerao RP (2018) Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212–215

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats T (2009) Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 21:2269–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walhout AJ, Vidal M (2001) High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24:297–306

    Article  CAS  PubMed  Google Scholar 

  • Wang K, He J, Zhao Y, Wu T, Zhou X, Ding Y, Kong L, Wang X, Wang Y, Li J, Song CP, Wang B, Yang S, Zhu JK, Gong Z (2018a) EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. Plant Cell 30:815–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK (2018b) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69:100–112

    Article  CAS  PubMed  Google Scholar 

  • Wang YG, Fu FL, Yu HQ, Hu T, Zhang YY, Tao Y, Zhu JK, Zhao Y, Li WC (2018c) Interaction network of core ABA signaling components in maize. Plant Mol Biol 96:245–263

    Article  CAS  PubMed  Google Scholar 

  • Williams SP, Rangarajan P, Donahue JL, Hess JE, Gillaspy GE (2014) Regulation of sucrose non-fermenting related kinase 1 genes in Arabidopsis thaliana. Front Plant Sci 5:324

    PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Song B, Nee G, Kramer K, Finkemeier I, Soppe WJ (2016) Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy. Plant Physiol 171:2659–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Yang X, Song Y, Du Q, Li Y, Chen J, Zhang D (2017) Adaptive evolution and functional innovation of Populus-specific recently evolved microRNAs. New Phytol 213:206–219

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20:56–64

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell Environ 26:1621–1631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Xiaoyan Sheng and Kristi DeCourcy for expert technical assistance. This work was supported by the United States Department of Energy (DOE) Office of Science (Biological and Environmental Research), Grant Nos. DE-SC0008570 to AMB and DE-FG02-07ER64449 to EPB and AMB and the United States Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA) Grant No. 2014-67013-21580 to EPB and AMB. Support was also provided by the Virginia Agricultural Experiment Station and the Hatch Program of USDA-NIFA, Project No. VA-135994.

Author information

Authors and Affiliations

Authors

Contributions

SBR, HEP, AMB, and EPB designed experiments and wrote the manuscript. SBR and HEP produced vectors for Y2H and for transient and stable gene expression in plants. SBR conducted Y2H and BiFC assays, prepared and characterized transgenic poplar plants, and measured gene expression. SBR analyzed RNAseq data. SBR and SPW analyzed and documented BiFC results using confocal microscopy.

Corresponding author

Correspondence to Eric P. Beers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 84 kb)

Supplementary material 2 (PDF 7519 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigoulot, S.B., Petzold, H.E., Williams, S.P. et al. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Plant Mol Biol 100, 303–317 (2019). https://doi.org/10.1007/s11103-019-00861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00861-7

Keywords