Skip to main content
Log in

Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Rice leucine-rich repeat extensin-like protein OsPEX1 mediates the intersection of lignin deposition and plant growth.

Abstract

Lignin, a major structural component of secondary cell wall, is essential for normal plant growth and development. However, the molecular and genetic regulation of lignin biosynthesis is not fully understood in rice. Here we report the identification and characterization of a rice semi-dominant dwarf mutant (pex1) with stiff culm. Molecular and genetic analyses revealed that the pex1 phenotype was caused by ectopic expression of a leucine-rich repeat extension-like gene, OsPEX1. Interestingly, the pex1 mutant showed significantly higher lignin content and increased expression levels of lignin-related genes compared with wild type plants. Conversely, OsPEX1-suppresssed transgenics displayed low lignin content and reduced transcriptional abundance of genes associated with lignin biosynthesis, indicating that the OsPEX1 mediates lignin biosynthesis and/or deposition in rice. When OsPEX1 was ectopically expressed in rice cultivars with tall stature that lacks the allele of semi-dwarf 1, well-known green revolution gene, the resulting transgenic plants displayed reduced height and enhanced lodging resistance. Our study uncovers a causative effect between the expression of OsPEX1 and lignin deposition. Lastly, we demonstrated that modulating OsPEX1 expression could provide a tool for improving rice lodging resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baumberger N, Ringli C, Keller B (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes Dev 15:1128–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, Clark MA, Simmons MP, Bedinger P, Goff SA, Ringli C, Keller B (2003a) Whole-Genome comparison of leucine-rich repeat extensins in Arabidopsis and Rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol 131:1313–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Steiner M, Ryser U, Keller B, Ringli C (2003b) Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. Plant J 35:71–81

    Article  CAS  PubMed  Google Scholar 

  • Bedinger P (2018) Coordinating cell walls and cell growth: A role for LRX extensin chimeras. Plant Physiol 176:1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM (2016) An update on cell surface proteins containing extensin-motifs. J Exp Bot 67:477–487

    Article  CAS  PubMed  Google Scholar 

  • De Micco V, Aronne G (2007) Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech Histochem 82:209–216

    Article  CAS  PubMed  Google Scholar 

  • Demura T, Ye Z (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:298–303

    Article  Google Scholar 

  • Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, Moller I, Abdou M, Frey B, Pauly M, Bacic A, Ringli C (2015) Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol 15:1–11

    Article  CAS  Google Scholar 

  • Dunser K, Gupta S, Ringli C, Kleine-Vehn J (2017) LRX- and FER-dependent extracellular sensing coordinates vacuolar size for cytosol homeostasis. bioRxiv. https://doi.org/10.1101/231043

  • Fabrice TN, Vogler H, Draeger C, Munglani G, Gupta S, Herger AG, Knox P, Grossniklaus U, Ringli C, Ciereszko I (2018) LRX proteins play a crucial role in pollen grain and pollen tube cell wall development. Plant Physiol 176:1981–1992

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu H, Dresselhaus T, Xiao J, Cheung AY, Qu L (2017) Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hake S, Vollbrecht E, Freeling M (1989) Cloning knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J 8:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M (2012) OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep 31:91–101

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M (2013) Survey of genes involved in rice secondary cell wall formation through a co-expression network. Plant Cell Physiol 54:1803–1821

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, Liu X, Wu K, Xu Z, Fu X, Zhou Y (2015) A Gibberellin-mediated della-nac signaling cascade regulates cellulose synthesis in rice. Plant Cell 27:1681–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohorn B, Kohorn S (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88. https://doi.org/10.3389/fpls.2012.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whittier R (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhang X, Zhang Z, Chen Z, Zhu H, Wang J, Zhang J, Zhang G (2007) Transpositional behaviour of the Ds element in the Ac/Ds system in rice. Chin Sci Bull 52:2789–2796

    Article  CAS  Google Scholar 

  • Liu X, Wolfe R, Welch LR, Domozych DS, Popper ZA, Showalter AM (2016) Bioinformatic identification and analysis of extensins in the plant kingdom. PLoS ONE 11:e150177

    Google Scholar 

  • Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM (2018) Filling the gaps to solve the extensin puzzle. Mol Plant 11:645–658

    Article  CAS  PubMed  Google Scholar 

  • Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JP, Grossniklaus U (2017) RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Moreira-Vilar FC, Siqueira-Soares RDC, Finger-Teixeira A, Oliveira DMD, Ferro AP, Da Rocha GJ, Ferrarese MDLL, Dos Santos WD, Ferrarese-Filho O (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLOS ONE 9:e110000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M (1999) Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant physiol 119:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen KS, Willats WGT, Malinovsky FG (2016) Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci 21:516–527

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Kim CM, Je BI, Park SH, Park SJ, Piao HL, Xuan Y, Choe MS, Satoh K, Kikuchi S, Lee KH, Cha YS, Ahn BO, Ji HS, Yun DW, Lee MC, Suh S, Eun MY, Han C (2007) A Ds-insertion mutant of OSH6 (Oryza sativa Homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice. Planta 227:1–12

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z (2014) Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crop Res 157:1–7

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  • Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    Article  CAS  Google Scholar 

  • Schneeberger RG, Becraft PW, Hake S, Freeling M (1995) Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev 9:2292–2304

    Article  CAS  PubMed  Google Scholar 

  • Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP (2018) Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 592:233–243

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene KNOTTED-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang K, Liu X, Liu M, Cao N, Duan Y, Yin G, Gao H, Wang W, Ge W, Wang J, Li R, Guo Y (2018) Pollen-expressed leucin-rich-repeat extensins are essential for pollen germination and growth. Plant Physiol 176:1993–2006

    Article  CAS  PubMed  Google Scholar 

  • Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, Ebitani T, Takarada T, Yano M, Yamamoto T, Fukuoka S, Wu J, Ando T, Ordonio RL, Hirano K, Matsuoka M (2015) Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol Plant 8:303–314

    Article  CAS  PubMed  Google Scholar 

  • Yoon J, Choi H, An G (2015) Roles of lignin biosynthesis and regulatory genes in plant development. J Integr Plant Biol 57:902–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li G, Song Y, Liu Z, Yang C, Tang S, Zheng C, Wang S, Ding Y (2014) Lodging resistance characteristics of high-yielding rice populations. Field Crops Res 161:64–74

    Article  Google Scholar 

  • Zhang X, Zheng X, Ke S, Zhu H, Liu F, Zhang Z, Peng X, Guo L, Zeng R, Hou P, Liu Z, Wu S, Song M, Yang J, Zhang G (2016) ER-localized adenine nucleotide transporter ER-ANT1: an integrator of energy and stress signaling in rice. Plant Mol Biol 92:701–715

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu C, Zhang L, Tao WA, Lozano-Durán R, Zhu J (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115:13123

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye Z (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  Google Scholar 

  • Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye Z (2011) Transcriptional activation of secondary wall biosynthesis by rice and maize nac and myb transcription factors. Plant Cell Physiol 52:1856–1871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 30900884, 31622041, 31471788 and 31671594); by Natural Science Foundation of Guangdong Province, China (Grant Nos. 2014A030313457 and 2015A020209118); by the Hatch Project of National Institute of Food and Agriculture, U.S.D.A (Grant No. 02413).

Author information

Authors and Affiliations

Authors

Contributions

SK and XL performed experiments and conducted fieldwork. JL and YHH worked on the transgenic lines. TFH and XQZ designed the experiments and analyzed the data; TFH supervised and complemented the writing; XQZ conceived the project and wrote the article with contributions of all the authors.

Corresponding authors

Correspondence to Tzung-Fu Hsieh or Xiang-Qian Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, S., Luan, X., Liang, J. et al. Rice OsPEX1, an extensin-like protein, affects lignin biosynthesis and plant growth. Plant Mol Biol 100, 151–161 (2019). https://doi.org/10.1007/s11103-019-00849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00849-3

Keywords

Navigation