Plant Molecular Biology

, Volume 97, Issue 4–5, pp 385–406 | Cite as

Genome-wide analysis of the invertase gene family from maize

  • Sheila Juárez-Colunga
  • Cristal López-González
  • Norma Cecilia Morales-Elías
  • Julio Armando Massange-Sánchez
  • Samuel Trachsel
  • Axel Tiessen


Key message

The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion


The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.


Beta-fructosidase Corn Hydrolase Non-structural carbohydrates paralogues Sucrase Zea mays 



Invertase (INV)


Reproductive stage 1


Reproductive stage 3



We thank Carolyn Smith from Peace Corps Response for proofreading the manuscript. This work was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACYT México) to SJC CLG, JAMS, and ATF. We acknowledge support from the National Laboratory PlanTECC, Problemas Nacionales and Infraestructura. We further acknowledge initial funding grants by SAGARPA through CIMMYT and the MasAgro initiative. We thank Dr. Andres Estrada Luna for technical support in the lab and the greenhouse. We also thank Dr. Luz Casados for her help in designing an optimized set of primers for qRT-PCR.

Author Contributions

ATF and SJC concieved and designed the research. SJC carried out the experiments and performed the bioinformatic surveys. SJC and ST carried out the field trials with maize. SJC, CLG and NCMS performed greenhouse experiments. SJC, CLG, NCMS and JAMS performed qRT-PCR and prepared figures. SJC and ATF interpreted the results. ST critically reviewed the manuscript. ATF and SJC wrote the paper. All authors read and approved the final manuscript.


  1. Angeles-Núñez JG, Tiessen A (2010) Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232:701–718CrossRefPubMedGoogle Scholar
  2. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129CrossRefPubMedGoogle Scholar
  4. Bihmidine S, Hunter CT, Johns CE, Koch KE, Braun DM (2013) Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front Plant Sci 4:177CrossRefPubMedPubMedCentralGoogle Scholar
  5. Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65:1713–1735CrossRefPubMedGoogle Scholar
  6. Briesemeister S, Rahnenfuhrer J, Kohlbacher O (2010) Going from where to why-interpretable prediction of protein subcellular localization. Bioinformatics 26:1232–1238CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cairns AJ, Gallagher JA (2004) Absence of turnover and futile cycling of sucrose in leaves of Lolium temulentum L.: implications for metabolic compartmentation. Planta 219:836–846CrossRefPubMedGoogle Scholar
  8. Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE, Lei JK, Achawanantakun R, Jiao D, Lawrence CJ, Ware D, Shiu SH, Childs KL, Sun YN, Jiang N, Yandell M (2014) MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol 164:513–524CrossRefPubMedGoogle Scholar
  9. Canam T, Unda F, Mansfield SD (2008) Heterologous expression and functional characterization of two hybrid poplar cell-wall invertases. Planta 228:1011–1019CrossRefPubMedGoogle Scholar
  10. Castrillon-Arbelaez PA, Martinez-Gallardo N, Arnaut HA, Tiessen A, Delano-Frier JP (2012) Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory. BMC Plant Biol 12:163CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211CrossRefPubMedGoogle Scholar
  12. Chen Z, Gao K, Su XX, Rao P, An XM (2015) Genome-wide identification of the invertase gene family in populus. PLoS ONE 10:e0138540CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cheng WH, Taliercio EW, Chourey PS (1996) The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784–4788CrossRefGoogle Scholar
  15. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dahro B, Wang F, Peng T, Liu JH (2016) PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biol 16:76CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443CrossRefGoogle Scholar
  18. Dhandapani P, Song JC, Novak O, Jameson PE (2017) Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann Bot 119:841–852PubMedGoogle Scholar
  19. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:1–19CrossRefGoogle Scholar
  20. Engelke T, Hirsche J, Roitsch T (2010) Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. J Exp Bot 61:2693–2706CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gallagher JA, Cairns AJ, Pollock CJ (2004) Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. J Exp Bot 55:557–569CrossRefPubMedGoogle Scholar
  22. Geigenberger P, Stitt M (1993) Sucrose synthase catalyzes a readily reversible-reaction invivo in developing potato-tubers and other plant-tissues. Planta 189:329–339CrossRefPubMedGoogle Scholar
  23. Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479CrossRefPubMedGoogle Scholar
  24. Goldschmidt EE, Huber SC (1992) Regulation of Photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186CrossRefGoogle Scholar
  26. Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297CrossRefPubMedGoogle Scholar
  27. Hwang I, Robinson DG (2009) Transport vesicle formation in plant cells. Curr Opin Plant Biol 12:660–669CrossRefPubMedGoogle Scholar
  28. Hyun TK, Eom SH, Kim JS (2011) Genomic analysis and gene structure of the two invertase families in the domesticated apple (Malus × domestica Borkh.). Plant Omics 4:391–399Google Scholar
  29. Ji XM, Van den Ende W, Van Laere A, Cheng SH, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634CrossRefPubMedGoogle Scholar
  30. Kim JY, Mahe A, Brangeon J, Prioul JL (2000a) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim JY, Mahe A, Guy S, Brangeon J, Roche O, Chourey PS, Prioul JL (2000b) Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 245:89–102CrossRefPubMedGoogle Scholar
  32. Kim D, Lee G, Chang M, Park J, Chung Y, Lee S, Lee TK (2011) Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings. J Agric Food Chem 59:11228–11233CrossRefPubMedGoogle Scholar
  33. Kocal N, Sonnewald U, Sonnewald S (2008) Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol 148:1523–1536CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246CrossRefPubMedGoogle Scholar
  35. Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372CrossRefPubMedGoogle Scholar
  36. Lawlor DW, Paul MJ (2014) Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Front Plant Sci 5:418CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee HS, Sturm A (1996) Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol 112:1513–1522CrossRefPubMedPubMedCentralGoogle Scholar
  38. Leturque A, Brot-Laroche E, Le Gall M (2012) Carbohydrate intake. Recent Adv Nutrigenet Nutrigenom 108:113–127CrossRefGoogle Scholar
  39. Lin F, Jiang L, Liu YH, Lv YD, Dai HX, Zhao H (2014) Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86:543–554CrossRefPubMedGoogle Scholar
  40. Liu SJ, Lan JX, Zhou BH, Qin YX, Zhou YH, Xiao XH, Yang JH, Gou JQ, Qi JY, Huang YC, Tang CR (2015) HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree). New Phytol 206:709–725CrossRefPubMedGoogle Scholar
  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  42. Ma Y, Slewinski TL, Baker RF, Braun DM (2009) Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. Plant Physiol 149:181–194CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martin ML, Lechner L, Zabaleta EJ, Salerno GL (2013) A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis. Planta 237:813–822CrossRefPubMedGoogle Scholar
  44. Matz MV, Wright RM, Scott JG (2013) No control genes required: Bayesian analysis of qRT-PCR data. PLoS ONE 8:e71448CrossRefPubMedPubMedCentralGoogle Scholar
  45. Miller ME, Chourey PS (1992) The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4:297–305CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pelleschi S, Guy S, Kim JY, Pointe C, Mahe A, Barthes L, Leonardi A, Prioul JL (1999) Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol Biol 39:373–380CrossRefPubMedGoogle Scholar
  47. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  48. Qi XP, Wu ZC, Li JH, Mo XR, Wu SH, Chu J, Wu P (2007) AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol 64:575–587CrossRefPubMedGoogle Scholar
  49. Raj-Kumar PK, Vallon O, Liang C (2017) In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii. Plant Mol Biol 94:253–265CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66CrossRefPubMedGoogle Scholar
  51. Ramirez-Sanchez O, Perez-Rodriguez P, Delaye L, Tiessen A (2016) Plant proteins are smaller because they are encoded by fewer exons than animal proteins. Genom Proteom Bioinform 14:357–370CrossRefGoogle Scholar
  52. Rodriguez D, Ramsay AJ, Quesada V, Garabaya C, Campo E, Freije JMP, Lopez-Otin C (2013) Functional analysis of sucrase-isomaltase mutations from chronic lymphocytic leukemia patients. Hum Mol Genet 22:2273–2282CrossRefPubMedGoogle Scholar
  53. Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613CrossRefPubMedGoogle Scholar
  54. Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524CrossRefPubMedGoogle Scholar
  55. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefGoogle Scholar
  57. Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203:449–467CrossRefGoogle Scholar
  58. Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407CrossRefPubMedGoogle Scholar
  61. Sturm A, Hess D, Lee HS, Lienhard S (1999) Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiol Plant 107:159–165CrossRefGoogle Scholar
  62. Taliercio EW, Kim JY, Mahe A, Shanker S, Choi J, Cheng WH, Prioul JL, Chourey PS (1999) Isolation, characterization and expression analyses of two cell wall invertase genes in maize. J Plant Physiol 155:197–204CrossRefGoogle Scholar
  63. Tamoi M, Tabuchi T, Demuratani M, Otori K, Tanabe N, Maruta T, Shigeoka S (2010) Point mutation of a plastidic invertase inhibits development of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedlings. J Biol Chem 285:15399–15407CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  65. Taussig R, Carlson M (1983) Nucleotide-sequence of the yeast Suc2 gene for invertase. Nucleic Acids Res 11:1943–1954CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci 5:293CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tiessen A, Padilla-Chacon D (2013) Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning. Front Plant Sci 3:306CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tiessen A, Nerlich A, Faix B, Hummer C, Fox S, Trafford K, Weber H, Weschke W, Geigenberger P (2012) Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method. J Exp Bot 63:2071–2087CrossRefPubMedGoogle Scholar
  70. Valencia JP, Goodman K, Otegui MS (2016) Endocytosis and endosomal trafficking in plants. Annu Rev Plant Biol 67 67:309–335CrossRefGoogle Scholar
  71. van Bel AJE, Hess PH (2008) Hexoses as phloem transport sugars: the end of a dogma? J Exp Bot 59:261–272CrossRefPubMedGoogle Scholar
  72. Vargas-Ortiz E, Espitia-Rangel E, Tiessen A, Delano-Frier JP (2013) Grain amaranths are defoliation tolerant crop species capable of utilizing stem and root carbohydrate reserves to sustain vegetative and reproductive growth after leaf loss. PLoS ONE 8:e67879CrossRefPubMedPubMedCentralGoogle Scholar
  73. Verhaest M, Lammens W, Le Roy K, De Coninck B, De Ranter CJ, Van Laere A, Van den Ende W, Rabijns A (2006) X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr Sect D-Biol Crystallogr 62:1555–1563CrossRefGoogle Scholar
  74. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic ERA. J Phycol 41:1077–1093CrossRefGoogle Scholar
  75. Wang YQ, Wei XL, Xu HL, Chai CL, Meng K, Zhai HL, Sun AJ, Peng YG, Wu B, Xiao GF, Zhu Z (2008) Cell-wall invertases from rice are differentially expressed in caryopsis during the grain filling stage. J Integr Plant Biol 50:466–474CrossRefPubMedGoogle Scholar
  76. Ward JM, Kuhn C, Tegeder M, Frommer WB (1998) Sucrose transport in higher plants. Int Rev Cytol Surv Cell Biol 178 178:41–71Google Scholar
  77. Webster H, Keeble G, Dell B, Fosu-Nyarko J, Mukai Y, Moolhuijzen P, Bellgard M, Jia JZ, Kong XY, Feuillet C, Choulet F, Appels R, Consor IWGS. (2012) Genome-level identification of cell wall invertase genes in wheat for the study of drought tolerance. Funct Plant Biol 39:569–579Google Scholar
  78. Wu Y, Muench DG, Kim YT, Okita TW (1997) Isolation and characterization of cytoskeleton-associated proteins from rice endosperm. Plant Physiol 114:238CrossRefGoogle Scholar
  79. Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W (2011) Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62:3849–3862CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xiong EH, Zheng CY, Wu XL, Wang W (2016) Protein subcellular location: the gap between prediction and experimentation. Plant Mol Biol Rep 34:52–61CrossRefGoogle Scholar
  81. Xu J, Pemberton GH, Almira EC, McCarty DR, Koch KE (1995) The Ivr 1 gene for invertase in maize. Plant Physiol 108:1293–1294CrossRefPubMedPubMedCentralGoogle Scholar
  82. Xu J, Avigne WT, McCarty DR, Koch KE (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism—evidence from a maize invertase gene family. Plant Cell 8:1209–1220CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yao Y, Geng MT, Wu XH, Liu J, Li RM, Hu XW, Guo JC (2014) Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz). Int J Mol Sci 15:7313–7331CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yao Y, Geng MT, Wu XH, Liu J, Li RM, Hu XW, Guo JC (2015) Genome-wide identification, expression, and activity analysis of alkaline/neutral invertase gene family from Cassava (Manihot esculenta Crantz). Plant Mol Biol Rep 33:304–315CrossRefGoogle Scholar
  85. Zeng Y, Wu Y, Avigne WT, Koch KE (1999) Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiol 121:599–608CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Genética, Unidad IrapuatoCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)GuanajuatoMexico
  2. 2.Global Maize ProgramCentro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT)TexcocoMexico
  3. 3.KWS GroupEinbeckGermany
  4. 4.Department of Genetics and BiotechnologyAarhus UniversitySlagelseDenmark

Personalised recommendations