Advertisement

Plant Molecular Biology

, Volume 96, Issue 6, pp 593–606 | Cite as

BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction

  • Og-Geum Woo
  • Soon-Hee Kim
  • Seok Keun Cho
  • Sang-Hoon Kim
  • Han Nim Lee
  • Taijoon Chung
  • Seong Wook Yang
  • Jae-Hoon Lee
Article
  • 372 Downloads

Abstract

Key message

BPH1 acts as a substrate receptor of CRL3 complex and negatively regulates ABA-mediated cellular responses. The study on its function provides information that helps further understand the relationship between ABA signaling and UPS.

Abstract

Abscisic acid (ABA) plays a crucial role in a variety of cellular processes, including seed dormancy, inhibition of seedling growth, and drought resistance in plants. Cullin3-RING E3 ligase (CRL3) complex is a type of multi-subunit E3 ligase, and BTB/POZ protein, a component of CRL3 complex, functions as a receptor to determine a specific substrate. To elucidate the CRL3 complex that participates in ABA-mediated cellular processes, we first investigated ABA-inducible BTB/POZ genes based on data from the AtGenExpress Visualization Tool (AVT). We then isolated an ABA-inducible gene encoding a potential CRL3 substrate receptor in Arabidopsis, BPH1 (BTB/POZ protein hypersensitive to ABA 1). The isolate gene has a BTB/POZ domain and a NPH3 domain within its N-terminal and C-terminal region, respectively. Yeast two-hybrid and co-immunoprecipitation assays showed that BPH1 physically interacted with cullin3a, a scaffold protein of CRL3, suggesting that it functions as an Arabidopsis CRL3 substrate receptor. The functional mutation of BPH1 caused delayed seed germination in response to ABA and enhanced sensitivity by NaCl and mannitol treatments as ABA-related stresses. Moreover, bph1 mutants exhibited enhanced stomatal closure under ABA application and reduced water loss when compared with wild-type, implying their enhanced tolerance to drought stress. Based on the information from microarray/AVT data and expression analysis of various ABA-inducible genes between wild-type and bph1 plants following ABA treatments, we concluded loss of BPH1 resulted in hyper-induction of a large portion of ABA-inducible genes in response to ABA. Taken together, these results show that BPH1 is negatively involved in ABA-mediated cellular events.

Keywords

CRL3 BTB/POZ protein BPH1 ABA Arabidopsis 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930213), by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (115081-2), and by the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (916007021HD040).

Author contributions

J-HL designed the research and analyzed the data. O-GW and S-HK carried out the experimental work and analyzed the data. SKC, S-HK and HNL carried out the experimental work. O-GW, SKC, HNL, TC, SWY and J-HL revised the manuscript. TC and SWY provided reagents and materials for the revision process, and analyzed the data. J-HL wrote the manuscript with contributions of authors TC and SWY.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11103_2018_717_MOESM1_ESM.docx (272 kb)
Supplementary material 1 (DOCX 271 KB)
11103_2018_717_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 27 KB)

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bensmihen S, Giraudat J, Parcy F (2005) Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 56:597–603CrossRefPubMedGoogle Scholar
  4. Biedermann S, Hellmann H (2011) WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci 16:38–46CrossRefPubMedGoogle Scholar
  5. Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez-Guzman M, Sayas E, Muñoz-Bertomeu J, Ibañez C, Serrano R, Rodriguez PL (2014) The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J 80:1057–1071CrossRefPubMedGoogle Scholar
  6. Chen YT, Liu H, Stone S, Callis J (2013) ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J 75:965–976CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng C, Wang Z, Ren Z, Zhi L, Yao B, Su C, Liu L, Li X (2017) SCFAtPP2–B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet 13:e1006947CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 21:1723–1730CrossRefGoogle Scholar
  9. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679CrossRefPubMedGoogle Scholar
  10. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 21:257–264CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fang L, Hou X, Lee LY, Liu L, Yan X, Yu H (2011) AtPV42a and AtPV42b redundantly regulate reproductive development in Arabidopsis thaliana. PLoS ONE 6:e19033CrossRefPubMedPubMedCentralGoogle Scholar
  12. Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE (ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 59:253–267CrossRefPubMedGoogle Scholar
  13. Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132CrossRefPubMedGoogle Scholar
  16. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993CrossRefPubMedPubMedCentralGoogle Scholar
  17. Genschik P, Sumara I, Lechner E (2013) The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J 32:2307–2320CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, Ma L, Vierstra RD (2005) Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280:18810–18821CrossRefPubMedGoogle Scholar
  19. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052CrossRefPubMedGoogle Scholar
  20. Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489CrossRefPubMedGoogle Scholar
  21. Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334CrossRefPubMedGoogle Scholar
  22. Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, Pick E, Strickland E, Paz-Ares J, Wei N, De Jaeger G, Rodriguez PL, Deng XW, Rubio V (2014) Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26:712–728CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328CrossRefPubMedGoogle Scholar
  24. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363CrossRefPubMedGoogle Scholar
  25. Kim SH, Kim H, Seo KI, Kim SH, Chung S, Huang X, Yang P, Deng XW, Lee JH (2014) DWD HYPERSENSITIVE TO UV-B 1 is negatively involved in UV-B mediated cellular responses in Arabidopsis. Plant Mol Biol 86:571–583CrossRefPubMedGoogle Scholar
  26. Kim H, Kim SH, Seo DH, Chung S, Kim SW, Lee JS, Kim WT, Lee JH (2016) ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis. Plant Mol Biol 90:303–315CrossRefPubMedGoogle Scholar
  27. Kong L, Cheng J, Zhu Y, Ding Y, Meng J, Chen Z, Xie Q, Guo Y, Li J, Yang S, Gong Z (2015) Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat Commun 6:8630CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638CrossRefPubMedGoogle Scholar
  29. Lee JH, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31:201–208CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26:775–780CrossRefPubMedGoogle Scholar
  31. Lee JH, Terzaghi W, Gusmaroli G, Charron JB, Yoon HJ, Chen H, He YJ, Xiong Y, Deng XW (2008) Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20:152–167CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW (2010) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22:1716–1732CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  34. Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–964CrossRefPubMedGoogle Scholar
  35. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363CrossRefPubMedGoogle Scholar
  36. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475CrossRefPubMedGoogle Scholar
  37. Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299CrossRefPubMedGoogle Scholar
  39. Oñate-Sánchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:93CrossRefPubMedPubMedCentralGoogle Scholar
  40. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedPubMedCentralGoogle Scholar
  41. Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28CrossRefPubMedGoogle Scholar
  42. Roberts D, Pedmale UV, Morrow J, Sachdev S, Lechner E, Tang X, Zheng N, Hannink M, Genschik P, Liscum E (2011) Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3NPH3. Plant Cell 23:3627–3640CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239CrossRefPubMedPubMedCentralGoogle Scholar
  44. Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668CrossRefPubMedGoogle Scholar
  45. Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588CrossRefPubMedGoogle Scholar
  46. Seo KI, Lee JH, Nezames CD, Zhong S, Song E, Byun MO, Deng XW (2014) ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26:695–711CrossRefPubMedPubMedCentralGoogle Scholar
  47. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590CrossRefPubMedGoogle Scholar
  48. Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MH, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88CrossRefPubMedGoogle Scholar
  49. Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138CrossRefPubMedPubMedCentralGoogle Scholar
  53. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593CrossRefPubMedPubMedCentralGoogle Scholar
  54. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839CrossRefPubMedPubMedCentralGoogle Scholar
  55. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid dependent signal transduction pathway under drought and high-salinity. Proc Natl Acad Sci USA 97:11632–11637CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397  CrossRefPubMedGoogle Scholar
  57. Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang F, Kong W, Wong G, Fu L, Peng R, Li Z, Yao Q (2016) AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Genet Genomics 291:1545–1559CrossRefPubMedGoogle Scholar
  59. Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748CrossRefPubMedPubMedCentralGoogle Scholar
  60. Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA 106:835–840CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1236CrossRefPubMedGoogle Scholar
  62. Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483CrossRefPubMedGoogle Scholar
  63. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685CrossRefPubMedGoogle Scholar
  64. Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 38:35–49CrossRefPubMedGoogle Scholar
  65. Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW (2008) Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20:1437–1455CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhang F, Liu S, Li L, Zuo K, Zhao L, Zhang L (2016) Genome-wide inference of protein-protein interaction networks identifies crosstalk in abscisic acid signaling. Plant Physiol 171:1511–1522PubMedPubMedCentralGoogle Scholar
  67. Zhao J, Zhao L, Zhang M, Zafar SA, Fang J, Li M, Zhang W, Li X (2017) Arabidopsis E3 ubiquitin ligases PUB22 and PUB23 negatively regulate drought tolerance by targeting ABA receptor PYL9 for degradation. Int J Mol Sci 18:1841CrossRefPubMedCentralGoogle Scholar
  68. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology EducationPusan National UniversityBusanSouth Korea
  2. 2.Department of Integrated Biological SciencePusan National UniversityBusanSouth Korea
  3. 3.Department of Systems Biology, College of Life Science and BiotechnologyYonsei UniversitySeoulSouth Korea
  4. 4.Department of Biological SciencesPusan National UniversityBusanSouth Korea
  5. 5.Section of Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations