Plant Molecular Biology

, Volume 96, Issue 4–5, pp 393–402 | Cite as

Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana

  • Anjali Misra
  • Thomas D. McKnight
  • Kranthi K. Mandadi
Article
  • 224 Downloads

Abstract

Key message

Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana.

Abstract

BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.

Keywords

Bromodomain proteins Global Transcription Factor Group E protein (GTE) Co-immunoprecipitation BTB domain protein Abscisic acid (ABA) 

Notes

Acknowledgements

We thank Drs. Wayne Versaw (Texas A&M University), Sonia Irigoyen and Renesh Bedre (Texas A&M AgriLife Research) for valuable discussion and help during the study and preparation of this manuscript. The study was partly funded by National Science Foundation grant (MCB0244159) to T.D.M. and USDA National Institute of Food and Agriculture to K.K.M (HATCH TEX09621).

Author contributions

AM and KKM conceived and designed research. AM and KKM conducted experiments. AM and KKM analyzed data. AM, KKM and TDM wrote the manuscript. All authors read and approved the manuscript.

Supplementary material

11103_2018_704_MOESM1_ESM.tif (1.9 mb)
Supplementary Figure S1. Germination inhibition by glucose. Representative images of germination of wild type (WT), bt2-1, gte9-1, gte11-1, 35S:BT2, 35S:GTE9 gte9-1, 35S:GTE11 gte11-1, 35S:BT2 gte9-1, 35S:BT2 gte11-1 seeds after 7 days on MS medium supplemented with 5% glucose or 5% mannitol (osmotic stress control) (TIF 1902 KB)
11103_2018_704_MOESM2_ESM.tif (1.7 mb)
Supplementary Figure S2. Germination inhibition by ABA. Representative images of germination of wild type (WT), bt2-1, gte9-1, gte11-1, 35S:BT2, 35S:GTE9 gte9-1, 35S:GTE11 gte11-1, 35S:BT2 gte9-1, 35S:BT2 gte11-1 seeds after 7 days on MS medium supplemented with 0% or 0.25% ABA (TIF 1740 KB)
11103_2018_704_MOESM3_ESM.tif (85 kb)
Supplementary Figure S3. Expression of ABA-responsive genes. Analysis of NCED3, RD22, RAD18 and RD29B expression was performed by qRT-PCR using RNA extracted from wild type (WT), gte9-1 and gte11-1 mutants treated with 0 or 10 μM ABA for 4 h. EIF4-A2 was used to normalize the qRT-PCR data. Expression values plotted are relative to WT untreated (MS) controls (TIF 84 KB)

References

  1. Airoldi CA, Della Rovere F, Falasca G, Marino G, Kooiker M, Altamura MM, Citterio S, Kater MM (2010) The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiol 152:1320–1334CrossRefPubMedGoogle Scholar
  2. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657CrossRefPubMedGoogle Scholar
  3. Araus V, Vidal EA, Puelma T, Alamos S, Mieulet D, Guiderdoni E, Gutiérrez RA (2016) Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. Plant Physiol 171:1523–1532PubMedPubMedCentralGoogle Scholar
  4. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096PubMedPubMedCentralGoogle Scholar
  5. Baena-González E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C (2009) The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21:3700–3713CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng W-H, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chua YL, Channelière S, Mott E, Gray JC (2005) The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Dev 19:2245–2254CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  11. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496CrossRefPubMedGoogle Scholar
  12. Du LQ, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators. Plant Mol Biol 54:549–569CrossRefPubMedGoogle Scholar
  13. Duque P, Chua N-H (2003) IMB1, a bromodomain protein induced during seed imbibition, regulates ABA- and phyA-mediated responses of germination in Arabidopsis. Plant J 35:787–799CrossRefPubMedGoogle Scholar
  14. Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, Shen Y, Feng S, Bostick M, Callis J, Hellmann H, Deng XW (2005) Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17:1180–1195CrossRefGoogle Scholar
  15. Florence B, Faller DV (2001) You BET-CHA: a novel family of transcriptional regulators. Front Biosci 6:D1008–D1018PubMedGoogle Scholar
  16. Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, Ma L, Vierstra RD (2005) Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280:18810–18821CrossRefPubMedGoogle Scholar
  17. Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 104:817–827CrossRefPubMedGoogle Scholar
  18. Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369–379CrossRefPubMedGoogle Scholar
  19. Huang B, Yang X-D, Zhou M-M, Ozato K, Chen L-F (2009) Brd4 coactivates transcriptional activation of NF-{kappa}B via specific binding to acetylated RelA. Mol Cell Biol 29:1375–1387CrossRefPubMedGoogle Scholar
  20. Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23:577–585CrossRefPubMedGoogle Scholar
  21. Kim MJ, Shin R, Schachtman DP (2009) A Nuclear Factor Regulates Abscisic Acid Responses in Arabidopsis. Plant Physiol 151:1433–1445CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim H, Kim S-H, Seo DH, Chung S, Kim S-W, Lee J-S, Kim WT, Lee J-H (2016) ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis. Plant Mol Biol 90:303–315CrossRefPubMedGoogle Scholar
  23. Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596CrossRefPubMedGoogle Scholar
  24. Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P (2011) MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell 21: 1116–1128CrossRefPubMedGoogle Scholar
  25. Lee A-Y, Chiang C-M (2009) Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability. J Biol Chem 284:2778–2786CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lin Y-P, Wu M-C, Charng Y-Y (2016) Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell 28:2974–2990CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mandadi KK, Misra A, Ren SX, McKnight TD (2009) BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol 150:1930–1939CrossRefPubMedPubMedCentralGoogle Scholar
  28. Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S (2000) Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 14:951–962PubMedPubMedCentralGoogle Scholar
  29. Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336CrossRefPubMedGoogle Scholar
  30. Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou M-M (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Molecular Cell 9:575–586CrossRefPubMedGoogle Scholar
  31. Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand, Sanchez R, Zeleznik-Le NJ, Ronai ZE, Zhou M-M (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13:251–263CrossRefPubMedGoogle Scholar
  32. Ottinger M, Christalla T, Nathan K, Brinkmann MM, Viejo-Borbolla A, Schulz TF (2006) Kaposi’s sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J Virol 80:10772–10786CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416CrossRefPubMedGoogle Scholar
  35. Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369CrossRefPubMedGoogle Scholar
  36. Pintard L, Willis JH, Willems A, Johnson J-LF, Srayko M, Kurz T, Glaser S, Mains PE, Tyers M, Bowerman B, Peter M (2003) The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425:311–316CrossRefPubMedGoogle Scholar
  37. Price J, Li T-C, Kang SG, Na JK, Jang J-C (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ren S, Mandadi KK, Boedeker AL, Rathore KS, McKnight TD (2007) Regulation of telomerase in Arabidopsis by BT2, an apparent target of TELOMERASE ACTIVATOR1. Plant Cell 19:23–31CrossRefGoogle Scholar
  39. Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21:2819–2826CrossRefPubMedPubMedCentralGoogle Scholar
  40. Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R (2009) BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development. Plant J 58:109–121CrossRefPubMedGoogle Scholar
  41. Rochon A, Boyle P, Wignes T, Fobert PR, Després C (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell 18:3670–3685CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185-S205CrossRefPubMedCentralGoogle Scholar
  43. Rolland F, Baena-Gonzalez E, Sheen J (2006) SUGAR SENSING AND SIGNALING IN PLANTS: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709CrossRefPubMedGoogle Scholar
  44. Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433CrossRefPubMedGoogle Scholar
  45. Smeekens S (2000) SUGAR-INDUCED SIGNAL TRANSDUCTION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol 51: 49–81CrossRefPubMedGoogle Scholar
  46. Xu L, Wei Y, Reboul J, Vaglio P, Shin T-H, Vidal M, Elledge SJ, Harper JW (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425:316–321CrossRefPubMedGoogle Scholar
  47. You J, Srinivasan V, Denis GV, Harrington WJ Jr, Ballestas ME, Kaye KM, Howley PM (2006) Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes. J Virol 80:8909–8919CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhou L, Jang J-c, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyTexas A&M UniversityCollege StationUSA
  2. 2.Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research & Extension CenterThe Texas A&M University SystemWeslacoUSA

Personalised recommendations